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Chapter 1

Introduction

This thesis studies the (numerical) analysis of the time-dependent behavior of some
queueing systems based on the Wiener-Hopf factorization technique. The latter technique
basically is used to solve Wiener-Hopf integral equations, and is discussed extensively in
the books by Corduneanu[19] and Zabreyko[44]. The probabilistic interpretation of these
equations is studied by Asmussen[9]. Cohen[18] gives an introduction to the use of Wiener-
Hopf equations in queueing theory. This technique is known as a powerful analytic tool
for analyzing queueing systems.

To obtain the time-dependent distributions of interest, first we specify the initial work-
load and then we derive the (systems of) transformed Wiener-Hopf integral equation(s).
The (system of) equation(s) is(are) then solved by applying the Wiener-Hopf factoriza-
tion technique. This approach is motivated by the thesis by Regterschot[38], where the
Wiener-Hopf factorization technique is applied to study the steady-state behavior of some
queueing systems.

For a queueing system with a non-zero initial workload, the (system of) transformed
Wiener-Hopf integral equation(s) contains a term that is related to the initial workload.
The solution of the (system of) equation(s) requires a decomposition of the latter term.
The need of this decomposition is the main difference between the analysis for the steady-
state behavior (in [38]) and the analysis of the time-dependent behavior in the present
thesis.

Transform techniques are well known techniques in the analysis of queueing systems.
The moments of the time-dependent distribution can be obtained easily by differentiating
the transform. The cumulative distribution function and the probability density function
can be obtained by inverting the transform. We use the Wiener-Hopf factorization and the
decomposition in analyzing the time-dependent behavior of some queueing systems, since
this approach will give us explicit expressions for the transforms of the time-dependent
distributions of interest which are easy to differentiate in order to obtain the moments.
Moreover, the explicit expressions for the transforms enable us to perform numerical inver-
sion in order to obtain the cumulative distribution functions and the probability density
functions.

There are many papers in which the transform technique is used to analyze the time-
dependent behavior of queueing systems. Papers by Bertsimas et. al.[13, 12] and Tanaka
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2 Introduction

et. al[42] are a few examples. Most authors give the time-dependent behavior in the
form of transforms or in the moments of the distributions of interest. The numerical
inversion for obtaining cumulative distribution functions or probability density functions
are rarely attempted, because it is considered difficult. Fortunately, there are some efforts
to develop effective numerical inversion algorithms so that numerical inversion can be easily
understood and performed. In particular, the algorithms proposed by Abate & Whitt[3, 2]
and Abate, Choudhury, & Whitt[1] are very easy to perform and enable us to do careful
error analysis. These effective numerical inversion algorithms and the explicit expressions
for the transforms guide us in analyzing the time-dependent distributions of interest, which
this thesis is about.

1.1 Focus of the thesis

We focus our analysis on two types of queueing systems: the classical queueing systems
and the fluid flow models. In the classical queueing systems the customers are treated
individually. We study two classes of queuing systems: the single server GI/G/1 system,
and the multi server GI/Hm/s system.

To investigate the applicability of our approach to the problems in the areas of computer
system modelling and telecommunication system modelling, we study fluid flow models
since these models are often used in those areas. The fluid flow model is a queueing system
where the input traffic of the system is treated as if it is a fluid, flowing continuously into
a buffer, which drains at a constant rate. The input flow is modulated by a (continuous-
time) stochastic process, and the input flow rate is constant between transitions of the
underlying jump process.

The first fluid flow model studied is the Markovian fluid flow model, where the input
flow is modulated by a (continuous-time) Markov chain. The second one is the semi-
Markovian fluid flow model, a generalization of the Markovian fluid flow model, where the
inter-jump time of the underlying process has a non-exponential distribution.

1.2 Methodology

For the GI/G/1 system, we consider the process {(Wn, Tn), n = 1, 2, · · · } defined on
the state space R+ × R+, in which {Tn} is an increasing time sequence generated by the
input process and Wn is the actual waiting time of the nth customer who arrives at time
Tn.

For Re(φ) ≥ 0 and (|r| ≤ 1, Re(η) > 0, v ≥ 0) or (|r| < 1, Re(η) ≥ 0, v ≥ 0), we
introduce the generating functions

Z(r, φ, η, v) =
∞∑

n=1

rnE
(
e−φWn−ηTn|C0 = v

)
, (1.1)

where C0 denotes the initial number of customers. For this system, we have a boundary
value problem on the imaginary axis Re(φ) = 0 characterized by the equation

Z(r, φ, η, v)(1 − rG(φ, η)) = rZ0(φ, η, v) + V (r, φ, η, v), (1.2)
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in which Z0(φ, η, v) is a function induced by the initial conditions defined for Re(φ) ≥ 0,
Re(η) ≥ 0, v ≥ 0, and, V (z, φ, η, v) is a function defined for Re(φ) ≤ 0 and (|r| ≤ 1,
Re(η) > 0, v ≥ 0) or (|r| < 1, Re(η) ≥ 0, v ≥ 0).

For the GI/Hm/s system and the fluid flow models, we consider the process {(Wn, Tn,
Xn), n = 1, 2, · · · } defined on the state space R+ × R+ × S, with S a finite set, in which
{Tn} is an increasing time sequence generated by the input process, Wn can be thought of
as workload of the system at time Tn and Xn represents the state at time Tn of a certain
stochastic process. In the GI/Hm/1 system, this process is the service process. In the fluid
flow models, this process is the underlying (semi-)Markov process, which we then denote
by the {Jt,≥ 0}.

Let 1(A) be the indicator function of the event A. Introducing the generating functions

Zij(r, φ, η, v) =
∞∑

n=1

rnE
(
e−φWn−ηTn1(Xn = j)|X1 = i,W1 = v

)
, i, j ∈ S, (1.3)

for Re(φ) ≥ 0 and (|r| ≤ 1, Re(η) > 0, v ≥ 0) or (|r| < 1, Re(η) ≥ 0, v ≥ 0), one is led
to solve a boundary value problem on the imaginary axis Re(φ) = 0 characterized by a
(matrix) equation of the following form

Z(r, φ, η, v)(I − rG(φ, η)) = rZ0(φ, η, v) + V(r, φ, η, v), (1.4)

in which Z0(φ, η, v) is a (matrix) function induced by the initial conditions defined for
Re(φ) ≥ 0, Re(η) ≥ 0 and, V(z, φ, η, v) is a (matrix) function defined for Re(φ) ≤ 0 and
(|r| ≤ 1, Re(η) > 0, v ≥ 0) or (|r| < 1, Re(η) ≥ 0, v ≥ 0).

The equations (1.2) and (1.4) are (a system of) Wiener-Hopf integral equations. In the
kernel H(r, φ, η) = I − rG(φ, η), I is the identity matrix and G is such that G(0, 0) is a
stochastic (transition) matrix.

Two steps are necessary to solve (1.2) and (1.4) for Z as a function of φ. In the first
step a Wiener-Hopf factorization of the kernel H has to be found such that

H(r, φ, η) = H+(r, φ, η)H−(r, φ, η) (1.5)

where H+(r, φ, η) is non-singular for Re(φ) > 0 and satisfies the properties A+, that is, it
is analytic for Re(φ) > 0 and continuous and bounded for Re(φ) ≥ 0 and H−(r, φ, η), is
non-singular for Re(φ) ≤ 0 and satisfies the properties A− that is analytic for Re(φ) < 0
and continuous and bounded for Re(φ) ≤ 0. Having found such a factorization, (1.2) or
(1.4) and (1.5) gives on Re(φ) = 0 the boundary equation

Z(r, φ, η, v)H+(r, φ, η)

=rZ0(φ, η, v)H−(r, φ, η)−1 + V(r, φ, η, v)H−(r, φ, η)−1.
(1.6)

The left-hand side satisfies the properties A+ while the second term on the right satisfies
the properties A−. Now the first term on the right involving Z0(φ, η, v) neither satisfies A+

nor A−. In the second step we, therefore, have to find a decomposition such that

rZ0(φ, η, v)H−(r, φ, η)−1 = K+(r, φ, η, v) + K−(r, φ, η, v), (1.7)
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in which K+(r, φ, η, v) satisfies properties A+ and K−(r, φ, η, v) satisfies properties A−.
From (1.2) or (1.4) and (1.7) we then obtain on Re(φ) = 0

Z(r, φ, η, v)H+(r, φ, η) − K+(r, φ, η, v)

=K−(r, φ, η, v) + V(r, φ, η, v)H−(r, φ, η)−1,
(1.8)

in which the function on the left satisfies the properties A+ and the function on the right
satisfies properties A−. Hence, by analytic continuation we can define a bounded entire
function on the whole φ-plane, which by Liouville’s theorem must be a matrix independent
of φ, say C(r, η, v). This finally gives, apart from the determination of C(r, η, v), the
(formal) solution

Z(r, φ, η, v) =
(
C(r, η, v) + K+(r, φ, η, v)

)
H+(r, φ, η)−1, (1.9)

for Re(φ) ≥ 0 and (|r| ≤ 1, Re(η) > 0, v ≥ 0) or (|r| < 1, Re(η) ≥ 0, v ≥ 0). With this
solution we are able to determine the time-dependent distributions of interest.

It should be noted that, for the models we study in this thesis, the solution Z(r, φ, η, v)
is a rational (matrix) function in φ. Then, it is possible to invert Z(r, φ, η, v) with respect
to the variable φ analytically.

1.3 Finding the steady-state distributions

Since information on numerical steady state results is desirable when studying numerical
solutions to time-dependent equations, we derive the steady state results for all models in
this thesis, although most of these results are already known or have been derived in [38]
or in de Smit[24, 21, 23].

For the GI/G/1 system, if the process {Wn} converges (weakly) to a random variable
W, then the steady-state distribution of W can be found by applying Abel’s limit theorem
for generating functions to (1.9). More precisely, the expression for the transform Z(φ) =
E
[
e−φW |C0 = v

]
can be obtained by evaluating limz↑1(1 − z)Z(z, φ, 0, v) that is

Z(φ) = E
[
e−φW |C0 = v

]
= lim

z↑1
(1 − z)Z(z, φ, 0, v).

Since the function Z(φ) is a rational function, we then can invert this transform analytically
to obtain the distribution function of W.

Similarly, for the other queueing systems we study in this thesis, if the process {Wn, Xn}
converges (weakly) to a random vector (W,X), then the steady-state distribution of (W,X)
can be found similarly from (1.9). Then, for i, j = 1, 2, . . . , N, Re(φ) ≥ 0,

Zij(φ) = E
(
e−φW1(X = j)|X1 = i,W1 = v

)

= lim
z↑1

(1 − z)Zij(z, φ, 0, v).

It is shown that if {Wn, Xn} converges (weakly) to a random vector (W,X), the function
Zij(φ) is independent of i and we later use the notation Zj(φ) instead of Zij(φ). The explicit
expression for the distribution function

Fj(x) = P{W ≤ x, X = j}, j = 1, 2, . . . , N,
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then can be obtained by inverting Zj(φ) analytically.

Let Vt be the workload of the system at time t ≥ 0, and let Nt be the number of
transitions of the underlying (semi-)Markov process up to time t. For the fluid flow models,
if at time t the underlying (semi-)Markov process is in state j, the input flow rate is assumed
to be rj so that the workload Vt satisfies the relation

Vt = [WNt − rj(t − TNt)]
+, (1.10)

where x+ = max{0, x}. The transform

Z∗
ij(φ, η, v) =

∫ ∞

0

e−ηtE
[
e−φVt1(Jt = j)|X1 = i, V1 = v

]
dt (1.11)

can be obtained in terms of Zij(φ, η, v) through a simple analysis of the process {(Vt, Jt), t ≥
0} and a contour integration. If the weak limit of {(Vt, Jt), t ≥ 0} exists and is denoted
by (V, J), then the transform

Z∗
j (φ) = E

[
e−φV 1(J = j)

]
(1.12)

can be obtained by applying Abel’s limit theorem to Z∗
ij(φ, η, v), and inverting it analyti-

cally will yield the distribution function

F ∗
j (x) = P{V ≤ j, 1(J = j)}.

Moreover, for the classical queueing system GI/G/1 the workload Vt satisfies the rela-
tion

Vt = [WNt + VNt − (t − TNt)]
+. (1.13)

The relation (1.13), in a similar way as for the fluid flow models, leads to an expression for
the transform

Z∗(φ, η, v) =

∫ ∞

0

e−ηtE[e−φVt |C0 = v] dt (1.14)

in terms of Z(1, φ, η, v). Similarly, we also can derive expressions for the transforms

U(r, s, v) =
∞∑

n=0

rnE[sCn|C0 = v]

and
∫∞

0
e−ηtE[sC∗

t ] dt, where Cn and C∗
t denote the number of customers in the system

just before the arrival of the nth customer and the number of customers in the system at
time t, respectively. By applying Abel’s limit theorem to these transforms, we obtain the
distributions of the number of customers at arrival epochs as well as in continuous times.
For the GI/Hm/s system, the distributions of the queue length at arrival epochs and in
continuous time are studied in a similar way.
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1.4 Finding the time-dependent distributions

It should be noted that the decomposition step in the procedure described in section
1.2 is essentially due to the presence of the rZ0(φ, η, v) term in (1.2) and (1.4) and is
characteristic for finding the transforms of time-dependent probability distributions. This
can be seen from (1.2) and (1.4), with η = 0, when one applies Abel’s limit theorem to
equation (1.2) and (1.4), under the provision that {Wn} or {Wn, Xn} converges weakly as
n → ∞, since multiplying (1.2) and (1.4) by (1 − r) the term involving rZ0(φ, η, v) will
tend to zero as one takes the limit for r ↑ 1.

The time-dependent distributions of interest can be obtained by inverting their mul-
tidimensional transforms numerically as proposed by Abate, Choudhury and Whitt[1],
Choudhury, Lucantoni and Whitt[16], and Moorthy[35, 36]. The numerical inversion al-
gorithm in [1] is based on the connection between the Laguere-series representation of the
function one wants to obtain and its multidimensional Laplace transform. To accelerate the
convergence, the algorithm is complemented by the scaling technique, which for inverting
the one dimensional transform is effective (see Choudhury, Lucantoni and Whitt[16]).

The transforms we derive in this thesis are not all multidimensional Laplace transform.
For example, to obtain the time-dependent distribution of the workload at arrival epochs,
Wn, we have to invert the transform Z(r, φ, 0, v) which is the generating function of the
Laplace transform of Wn. The numerical inversion algorithms in [1, 16, 35, 36] can not be
applied directly to the transform Z(r, φ, 0, v). In obtaining time distributions of interest, in
this thesis we use a different approach. Noting that the transform Z(r, φ, η, v) is a rational
(matrix) function in φ, first we apply an analytic inversion to the transforms. The result
is not a rational function anymore, so then we apply numerical inversion.

In the fluid flow models, we assume that the inter-jump times of the underlying process
have a common distribution where its Laplace-Stieltjes transform is a rational function. It
follows that the kernel H(r, φ, η) is a rational function in the variable φ. The location of
the zeros and the poles of H(r, φ, η) in the complex plane φ will guide us in finding the
factors H+(r, φ, η) and H−(r, φ, η), and the Wiener-Hopf factorization used will give us
rational factors in φ. Furthermore, the expression of Z(r, φ, η) in (1.9) with respect to the
variable φ consists of some rational functions and multiplication of rational functions and
exponential functions. This enable us to invert Z(r, φ, η) analytically with respect to the
variable φ. Let z(r, x, η) be the result of this inversion.

The time-dependent distribution of the workload at transition epochs can be obtained
by inverting the generating function z(r, 0, x). We then apply the numerical inversion al-
gorithm proposed in Abate and Whitt[3] to invert z(r, η, x) since z(r, η, x) is not a simple
function to be inverted analytically.

The time-dependent distribution of the workload can be obtained in a similar way.
Notice that in obtaining this distribution, the analytical inversion will yield a Laplace-
Stieltjes transform which is also not simple to be inverted analytically. The numerical
inversion algorithm for inverting the Laplace transform in [3] can be applied to obtain the
distribution.

For the classical queueing systems we study in this thesis, the rationality of the ker-
nel H(r, φ, η) is ensured if the inter-arrival times or the service times have a rational
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Laplace-Stieltjes transform. The GI/Hm/s system has this characteristic so that the time-
dependent distributions of interest can be obtained by applying the same technique as for
the fluid flow models. For the GI/G/1 system, we restrict our analysis to the special cases
GI/Km/1 and Km/G/1. This restriction is not too strong since the set of distributions
with rational Laplace-Stieltjes transform is dense in the distribution space so that any sin-
gle server queueing system can be approximated by the GI/Km/1 system or the Km/G/1
system.

As mentioned above the numerical inversion is the last crucial step in obtaining the
time-dependent distributions. The numerical inversion algorithms proposed in [1] are very
useful for inverting the time-dependent distribution functions (more explanation on the
algorithms can be found in section 2.4).

1.5 Organization of the thesis

This thesis is organized as follows. After the introduction, in chapter 2 we recall some
results from complex function theory and some isolated lemmas and introduce notation
that will be used in the sequel. Moreover, we give a brief introduction on the Wiener-
Hopf factorization and its application. This chapter also presents the numerical inversion
algorithms in [3] and an explanation of how we set the accuracy. In chapter 3 we apply the
Wiener-Hopf factorization technique to study the time-dependent behavior of the system
GI/G/1. In chapter 4 we apply the technique to study the system GI/Hm/s. In both
chapters, we successfully obtain the time-dependent distributions of the actual waiting
times, the virtual waiting times, the number of customers at arrival epochs as well as
in continuous time. In chapter 4 we also obtain the time dependent distributions of the
queue length at arrival epochs as well as in continuous time. In chapter 5 we study the
time-dependent buffer content in the Markovian Fluid Flow Model. The generalization of
this model to the semi-Markovian case is studied in chapter 6.
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Chapter 2

Some Mathematical Preliminaries

In this chapter, we give some preliminaries that are needed for the analysis in chapter
3 until chapter 6. We begin with section 2.1, which gives us definitions on some contours
and identities, and followed by a short discussion of the analytic continuation in section
2.2. In section 2.3 we give a short introduction to Wiener-Hopf factorization, which plays
a key role in solving the main systems of equations we derive in chapters 3 - 6. We end this
chapter by giving the numerical algorithms used for inverting Laplace-Stieltjes transforms
and generating functions.

2.1 Contours and Identities

In this thesis, we will often consider the following contours.

Definition 2.1.1
For R > δ ≥ 0, C+

δ,R is the closed contour consisting of

1. the part of the line Re(φ) = −δ, running from −δ + i
√

R2 − δ2 to
−δ − i

√
R2 − δ2 and

2. the part of circle |φ| = R, running counterclockwise from
−δ − i

√
R2 − δ2 to −δ + i

√
R2 − δ2.

C−
δ,R is the closed contour consisting of

1. the part of the line Re(φ) = −δ, running from −δ − i
√

R2 − δ2 to
−δ + i

√
R2 − δ2 and

2. the part of circle |φ| = R, running counterclockwise from
−δ + i

√
R2 − δ2 to −δ − i

√
R2 − δ2.

The definition is illustrated by figure 2.1.

For derivations, we use some identities of which the proof can be found in the book by
Cohen [17]. First, we introduce the notations

[x]+ = max(0, x), [x]− = min(0, x), −∞ < x < ∞. (2.1)

9
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Figure 2.1: The contour C+
δ,R (left) and the contour C−

δ,R(right).

Identity 2.1.1
For arbitrary real x and complex numbers φ1 and φ2,

e−φ1[x]+ + e−φ2[x]− = e−φ1[x]+−φ2[x]− + 1. (2.2)

Proof. See page 142 of Cohen [17].

Identity 2.1.2
For arbitrary real x,

e−φ[x]+ =
1

2πi
lim

R→∞

∫ iR+0

−iR+0

dξ
φ

ξ(φ − ξ)
e−ξx. (2.3)

Proof. See page 269 of Cohen [17].

The following identity is the Dirichlet integral representation of the normalized unit
step function.

Identity 2.1.3

1(x < 0) +
1

2
1(x = 0) =

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
e−ξx. (2.4)

Proof. See Widder[43].
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2.2 Analytic Function and Analytic Continuation

In chapters 3-6 we will consider some analytic functions that satisfy a certain property,
which is formulated in the following.

Definition 2.2.1
We say a function f satisfies property A+ if f(φ) is
(i) analytic on Re(φ) > 0,
(ii) continuous and bounded on Re(φ) ≥ 0,

and we say it satisfies property Ã+ if, in addition, it is
(iii) bounded away from 0 on Re(φ) ≥ 0.

We say a function f satisfies property A− if f(φ) is
(i) analytic on Re(φ) < 0,
(ii) continuous and bounded on Re(φ) ≤ 0,

and we say it satisfies property Ã− if, in addition, it is
(iii) bounded away from 0 on Re(φ) ≤ 0.

Next, we recall a theorem called the principle of analytic continuation. We will use this
theorem in proving some main theorems in this thesis.

Theorem 2.2.1
Let an analytic function f1(z) be defined in a region Ω1 and let Ω2 be another region

which has a certain subregion ω, but only this one, in common with Ω1. Then, if a function
f2(z) exists which is analytic in Ω2 and coincides with f1(z) in ω, there can only be one
such function. f1(z) and f2(z) are called analytic continuations of each other.

Proof. See Knopp [30].

2.3 Wiener-Hopf factorization

The technique to solve the problems in this thesis is based on Wiener-Hopf factorization.
In this section we recall some definitions and some theorems about this factorization and
its application to the problems in chapters 3 until chapter 6.

Let f, g and k0 be functions of bounded variation on the real line (−∞,∞), where
f and h have non-negative support, i.e. f(t) = k0(t) = 0 for t < 0. The function f
defines a Stieltjes measure df(.) on the positive half-axis [0,∞) which is used to define
Riemann-Stieltjes integrals. The integral equation for f,

f(t) −
∫ +∞

0−

g(t − y)df(y) = k0(t), t ≥ 0, (2.5)

is called the Wiener-Hopf integral equation. Since f(t) = 0 for t < 0 we may extend this
equation to the negative half-axis by introducing a function

k(t) =





−
∫ +∞

0−
g(t − y)df(y), t < 0,

k0(t), t ≥ 0.

(2.6)
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So we get the extended Wiener-Hopf integral equation

f(t) −
∫ +∞

0−
g(t − y)df(y) = k(t), −∞ < t < ∞. (2.7)

By introducing the Laplace-Stieltjes transforms

F (φ) =

∫ +∞

0−

e−φtdf(t), Re(φ) ≥ 0,

G(φ) =

∫ +∞

−∞

e−φtdg(t), Re(φ) = 0,

K(φ) =

∫ 0−

−∞

e−φtdk(t), Re(φ) ≤ 0, and

K0(φ) =

∫ +∞

0−
e−φtdk0(t), Re(φ) ≥ 0,

and applying transforms to equation (2.7) gives the transformed Wiener-Hopf equation

F (φ)(1 − G(φ)) = K0(φ) + K(φ), Re(φ) = 0, (2.8)

where F (φ) and K0(φ) satisfy the property A+ and K(φ) satisfies the property A−. The
equation (2.8) can be solved using a factorization method applied to the symbol of (2.8)

H(φ) = 1 − G(φ).

The factorization is referred to as Wiener-Hopf factorization since it is connected to the
Wiener-Hopf technique in the theory of integral equations. This technique is about to
write a complex valued function H(φ), which is bounded and continuous on Re(φ) = 0
with limφ→i∞ H(φ) = limφ→−i∞ H(φ) = 1, in the form

H(φ) = H+(φ)H−(φ), Re(φ) = 0, (2.9)

where H+(φ) satisfies property A+ and H−(φ) satisfies property A−.
We shall only consider factorizations with

H+(+i∞) = H+(−i∞) = H−(+i∞) = H−(−i∞) = 1.

Since both factors are bounded at infinity and analytic in their respective half-planes
Re(φ) > 0 and Re(φ) < 0 they are bounded in the closed half-planes Re(φ) ≥ 0 and
Re(φ) ≤ 0 respectively. We impose the condition that H(φ) does not vanish on the
imaginary axis, i.e.

H(φ) 6= 0, Re(φ) = 0. (2.10)

This condition implies that H+(φ) and H−(φ) can not vanish on the imaginary axis
Re(φ) = 0. The factorization (2.9) is regular if at least one of the factors H+(φ) and
H−(φ) does not vanish in the half-plane of analyticity. It is canonical if both factors
H+(φ) and H−(φ) do not vanish in their half-planes of analyticity, so that

H+(φ) 6= 0, Re(φ) ≥ 0, and

H−(φ) 6= 0, Re(φ) ≤ 0.
(2.11)

The existence of the canonical factorization (2.11) is given by the following theorem.
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Theorem 2.3.1 (Scalar factorization theorem)
A function H(φ) = 1 − G(φ) admits a canonical factorization if and only if

• H(φ) 6= 0, Re(φ) = 0,

• one of the following is satisfied

1. the number of zeros of H(φ) in Re(φ) > 0 is equal to the number of poles of
H(φ) in Re(φ) > 0,

2. the number of zeros of H(φ) in Re(φ) < 0 is equal to the number of poles of
H(φ) in Re(φ) < 0.

The canonical factorization is unique. Moreover we have

H+(φ) = 1 +

∫ +∞

0

e−φtdC(t), Re(φ) ≥ 0, and

H−(φ) = 1 +

∫ 0

−∞

e−φtdC(t), Re(φ) ≤ 0,

where C(t) is a function of bounded variation on the real line.

Proof. See Corduneanu [19] and Regterschot [38]. �

The conditions 1 and 2 in Theorem 2.3.1 can be verified by Rouché’s theorem. If in
a half-plane the number of zeros is not equal to the number of poles then there exists a
factorization as well. However it is not canonical and not necessarily unique. For more
details see Corduneanu [19] and Zabreyko [44].

In chapters 4-6, we are dealing with some systems of transformed Wiener-Hopf equa-
tions. The necessary and sufficient conditions for these systems to admit a canonical
factorization is ensured in Bart, Gohberg, and Kaashoek[10]. The conditions involve the
det H(φ) instead of H(φ), and we can use a generalization of Rouché’s theorem, given in
de Smit [21], to verify the conditions.

If the canonical factors for the symbol of (2.8) exist then we have

F (φ)H+(φ) = K0(φ)/H−(φ) + K(φ)/H−(φ), Re(φ) = 0. (2.12)

Now the left hand-side satisfies property A+ and the last term of the right hand-side
satisfies property A−. We then try to find a decomposition of K0(φ)/H−(φ), i.e. we look
for two functions C+(φ) and C−(φ) such that

• C+(φ) satisfies property A+,

• C−(φ) satisfies property A−,

• K0(φ)/H−(φ) = C+(φ) + C−(φ).
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With this decomposition we have from (2.12)

F (φ)H+(φ) − C+(φ) = C−(φ) + K(φ)/H−(φ). (2.13)

At this point we invoke Liouville’s theorem.

Theorem 2.3.2 (Liouville’s theorem)
A function analytic and bounded in the whole complex plane is constant.

Proof. See page 451 of Apostol[5]. �

From (2.13) it now follows by analytic continuation that it is possible to define a function
equal to the left hand-side of (2.13) for Re(φ) ≥ 0 and equal to the right hand-side of (2.13)
for Re(φ) ≤ 0. It now follows from Liouville’s theorem that

F (φ)H+(φ) − C+(φ) = constant, Re(φ) ≥ 0, (2.14)

and

C−(φ) + K(φ)/H−(φ) = constant, Re(φ) ≤ 0, (2.15)

where the constant is determined by the known value, c say, at the origin, so

c = F (0)H+(0) − C+(0) = C−(0) + K(0)/H−(0). (2.16)

Since the factorization is unique we now have

Theorem 2.3.3
If the function H(φ) = 1 − G(φ) admits a canonical factorization, then equation (2.8)

has the unique solution

F (φ) =
(
C+(φ) + F (0)H+(0) − C+(0)

)
/H+(φ), Re(φ) ≥ 0, (2.17)

and

K(φ) =
(
F (0)H+(0) − K+(0) − C−(φ)

)
H−(φ), Re(φ) ≤ 0. (2.18)

Proof. Equations (2.17) and (2.18) are obtained directly by substituting (2.16) into
(2.14) and (2.15). �

2.4 Numerical inversions

In this section we discuss the numerical inversions for the Laplace transforms and proba-
bility generating functions proposed in Abate & Whitt[3].
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2.4.1 Numerical inversion algorithm for Laplace transforms

Given the Laplace transform

f̂(s) =

∫ ∞

0

e−stf(t)dt, Re(s) ≥ 0, (2.19)

where f is a function on the positive real line, we want to invert (2.19) to obtain the
function f. The analytical formula for this function is given by

f(t) =
1

2π

∫ ∞

−∞

e−ituf̂(u)du, t ∈ R
+, (2.20)

but often the integral in (2.20) is difficult to evaluate analytically. A numerical inversion
is then appropriate. The numerical inversion is based on the integral (2.20), in which the
integral is evaluated numerically by using the trapezoidal rule. It yields an approximation
for f(t) in terms of the alternating series

f(t) ≈ eA/2

2t
Re(f̂)

(
A

2t

)
+

eA/2

t

∞∑

k=1

(−1)kRe(f̂)

(
A + 2kπi

2t

)
, (2.21)

where real number A and integer numbers m and n are parameters to control the accuracy.
The series is then approximated by the Euler sum

E(t,m, n) =
m∑

k=0

(
m

k

)
2−mSn+k(t) (2.22)

where

Sn(t) =
n∑

k=0

(−1)kak(t), (2.23)

with

a0(t) = f̂

(
A

2t

)
/2, (2.24)

ak(t) = Re(f̂)

(
A + 2kπi

2t

)
, k ≥ 1, (2.25)

so that

f(t) ≈ eA/2

t
E(t,m, n). (2.26)

In [3] it is shown that |E(t,m, n)−E(t,m, n+1)| can be used for estimating the error
due to the approximation formula (2.26). It is indicated that to obtain accuracy to 10−7,
we can set A = 19.1, m = 11, and n = 15.
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2.4.2 Numerical inversion algorithm for generating functions

Suppose that

g(z) =
∞∑

j=0

zjP (X = j) =
∞∑

j=0

zjpj, |z| ≤ 1, (2.27)

the probability generating function of a random variable with non-negative integer values
X, is given. The analytical formula for pj = P (X = j) is

pj =
1

2πi

∫

Cr

g(z)

zj+1
dz, (2.28)

where Cr is the circle with center at origin and of radius r, 0 < r < 1, and the integration
is taken counter clockwise. Let z = reiu. Substituting this to (2.28) we obtain

pj =
1

2πi

∫ 2π

0

g(reiu)

(reiu)j+1
ireiudu

=
1

2πrj

∫ 2π

0

g(reiu)e−ijudu

=
1

2πrj

∫ 2π

0

(
Re(g(reiu)) + iIm(g(reiu))

)
(cos(ju) − i sin(ju)) du.

(2.29)

Since pj is a real number, then

pj =
1

2πrj

∫ 2π

0

(
cos(ju)Re(g(reiu)) + sin(ju)Im(g(reiu))

)
du. (2.30)

The trapezoidal rule with step size π/j is then applied to approximate the integral in
(2.30), and yields

pj ≈
π

2πjrj

[
g(r) + g(−r)

2
+

2j−1∑

k=1

cos(kπ)Re(g(reikπ/j)) +

2j∑

k=1

sin(kπ)Im(g(reikπ/j))

]

=
1

2jrj

2j∑

k=1

(−1)kRe(g(reikπ/j)),

and with some algebra we obtain

pj ≈
1

2jrj

[
g(r) + g(−r) + 2

j−1∑

k=1

(−1)kRe(g(reikπ/j))

]
. (2.31)

Denote the right hand side of (2.31) by p̃j. In [3] it is proven that for 0 < r < 1 and j ≥ 1,

|pj − p̃j| ≤
r2j

1 − r2j
.

But for practical purposes, we can think of the error bound as r2j since r2j

1−r2j is approxi-

mately equal to r2j when r2j is small. Hence, to have accuracy to 10−γ, we let r = 10−γ/2j.



Chapter 3

The Single Server GI/G/1 queue

3.1 Introduction

We consider a single server queueing system with renewal input and infinite waiting
room in which customers are served in order of arrival, i.e. with first come - first served
(FCFS) discipline. We choose t = T0 = 0 at the arrival epoch of an arbitrary customer. We
assume that this customer finds upon his arrival C0 other customers in the system, which
are numbered 1, 2, . . . , C0 in order of their arrival. These customers will be referred to as
special customers. For convenience we assume that the first special customer enters service
at t = 0. The service times of the special customers will be denoted by X1, X2, . . . , XC0 .
After the arrival at time T0 subsequent customers arrive at time epochs T1, T2, . . .. The
inter-arrival times are denoted by An = Tn − Tn−1, n = 1, 2, . . . and the service time of the
nth customer is denoted by Bn, n = 0, 1, . . .. By assumption {An} constitutes a sequence
of independent identically distributed (i.i.d.) nonnegative random variables with

F (x) = P (An ≤ x)

F (0+) = 0

E(An) = α < ∞.

Also {Bn} are i.i.d. nonnegative random variables and we denote

G(x) = P (Bn ≤ x)

with G(0+) = 0

E(Bn) = β < ∞.

We assume that the probability distribution of An, n = 1, 2, · · · , is non-lattice. Moverover,
we assume that {An}, {Bn} and {Xi, i = 1, 2, . . . , C0} are three independent families of
random variables. As usual, the traffic intensity ρ is defined by β/α.

We are interested in the steady state (if it exists) and time dependent probability
distributions of the actual waiting time of the nth customer, the virtual waiting time at
time t and, the number of customers in the system at arrival epochs and in continuous time.

17
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These system characteristics have been investigated by Cohen[17], Bertsimas et al. [13] and
Bertsimas & Nakazato[12], under the assumption C0 = 0.

In [13] the analysis is done by solving a Hilbert factorization problem. Two special cases
of the problem, i.e. the cases in which either the probability distribution of the inter-arrival
times or the service times has a rational Laplace transform are solved explicitly, yielding
simple closed-form expressions for the Laplace transforms of the waiting time distribution
and the busy period distribution. Algorithmically, the approach offers a method for finding
these distributions through numerical inversion, which is claimed to be very tractable.

The two special cases mentioned above are also studied in de Smit[24] for the steady
state. Wiener-Hopf factorization is used to analyze the problem, and as a result, the
Laplace-Stieltjes transforms of the steady-state distribution of waiting time of nth customer
and the distribution of the virtual waiting time are obtained.

Furthermore, in [12] another special case of the model is considered. This special case
is the MGEL/MGEM/1 queue, that is the queueing model in which the inter-arrival times
and the service times have a mixed generalized Erlang distribution. The authors use the
method of stages, and give closed-form expressions for the Laplace transforms of the queue
length distribution and the waiting time distribution. Some examples of the distributions
of the busy period, the queue length, and the waiting time are given, obtained through
numerical inversion of the Laplace transforms.

For the analysis of the present model, we use the same method as in [24]. To find
the distribution function of the waiting time of the nth arbitrary customer, Wiener-Hopf
factorization is used. Later we will see that this factorization must be followed by a
decomposition of a certain function since in our model we have a non-zero waiting time
for the customer who arrives at t = 0. For the two special cases studied in [13], which we
denote by GI/Kn/1 and Km/G/1, an explicit factorization can be found. This gives us
an explicit expression for the generating function of the Laplace-Stieltjes transform of the
distribution of the actual waiting time of the nth customer. Based on this result, we could
derive an explicit expression for the Laplace-Stieltjes transform of the virtual waiting time.

For the study of the number of customers in the system, we derive a general expression
for the Laplace-Stieltjes transform of the time-dependent expectation of the number of cus-
tomers using contour integration. For the systems GI/Kn/1 and Km/G/1, the expression
for the Laplace-Stieltjes transforms can be determined explicitly. The explicit expressions
for the transforms enable us to perform a numerical inversion of these transforms to obtain
the time-dependent distributions/expectations of interest. We apply the numerical inver-
sion algorithm proposed in [3], and the numerical results can be found in the end of this
chapter.

This chapter is organized as follows. After giving some notations and definitions in
section 3.2, we will study the probability distribution of the actual waiting time of the nth
customer in section 3.3. Then in section 3.4 we derive the probability distribution of the
virtual waiting time. Based upon some results in sections 3.3 and 3.4, we subsequently
study the number of customers at arrival epochs in section 3.5 and for continuous time in
section 3.6. A more detailed study of these distributions for the queueing models GI/Kn/1
and Km/G/1, can be found in section 3.7. In section 3.7.3 we give some examples of the
distributions obtained by numerical inversion. For the systems with traffic intensity ρ < 1
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we give the distributions in steady state as well as in transient state and, for the systems
with ρ > 1, we give the time dependent distribution of the number of customers at time t
and its behavior as t increases.

3.2 Notations and definitions

We denote the actual waiting time of nth customer by Wn and the virtual waiting
time at time t by Vt. If C0 = γ, then W0 =

∑γ
i=1 Xi. We assume that the Xi have finite

positive mean and, that their probability distribution is non-lattice and has a rational
Laplace-Stieltjes transform of the following form

P(φ) = E
[
e−φXi

]
=

P (φ)
∏k

i=1(φ + wi)
, (3.1)

Consequently,

E
[
e−φW0|C0 = γ

]
=

P γ(φ)
∏k

i=1(φ + wi)γ
, (3.2)

where Re(wi) > 0, i = 1, 2, . . . , k, and in which P (φ) is a polynomial of degree k − 1 or
less. We assume that the coefficient of φd, where d is the degree of P (φ), is unity.

Let the L-S transforms of the distribution functions of the inter-arrival and service
times be denoted by

A(φ) =

∫ ∞

0

e−φxF (dx), Re(φ) ≥ 0

and

B(φ) =

∫ ∞

0

e−φxG(dx), Re(φ) ≥ 0,

respectively. We assume that there exists a δ > 0 such that A(φ) and B(φ) can be continued
analytically into the region Re(φ) > −δ.

3.3 The distribution of actual waiting times

Since the service discipline is FCFS, the actual waiting times satisfy the recurrence
relation

Wn+1 = [Wn + Bn − An+1]
+ n = 0, 1, . . . .

Let for (|r| < 1, Re(φ) ≥ 0, Re(η) ≥ 0, γ ≥ 0), or (|r| ≤ 1, Re(φ) ≥ 0, Re(η) > 0, γ ≥ 0), or
(|r| ≤ 1, Re(φ) > 0, Re(η) ≥ 0, γ ≥ 0),

Z(r, φ, η, γ) =
∞∑

n=0

rnE
[
e−φWn−ηTn|C0 = γ

]
,

and let

V (r, φ, η, γ) =
∞∑

n=0

rn+1E
[(

1 − e−φ[Wn+Bn−An−1]−
)

e−ηTn+1|C0 = γ
]
,

for (|r| < 1, Re(φ) ≤ 0, Re(η) ≥ 0, γ ≥ 0) or (|r| ≤ 1, Re(φ) ≤ 0, Re(η) > 0, γ ≥ 0).
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Theorem 3.3.1
For (|r| < 1, Re(φ) = 0, Re(η) ≥ 0, γ ≥ 0) or (|r| ≤ 1, Re(φ) = 0, Re(η) > 0, γ ≥ 0),

Z(r, φ, η, γ){1 − rA(η − φ)B(φ)} =
P γ(φ)

∏k
i=1(φ + wi)γ

+ V (r, φ, η, γ). (3.3)

Proof. By using the identity 2.1.1 with φ1 = φ2 = φ, that is

e−φx+

= e−φx + 1 − e−φx−

(3.4)

we have for Re(φ) = 0, Re(η) ≥ 0, and γ ≥ 0,

E
[
e−φWn+1−ηTn+1 |C0 = γ

]

= E
[
e−φ[Wn+Bn−An+1]+−ηTn+1 |C0 = γ

]

= E
[
e−φ[Wn+Bn−An+1]−ηTn+1|C0 = γ

]

+E
[(

1 − e−φ[Wn+Bn−An+1]−
)

e−ηTn+1|C0 = γ
]

= E
[
e−φWn−ηTn|C0 = γ

]
E
[
e−φBn−(η−φ)An+1|C0 = γ

]

+E
[(

1 − e−φ[Wn+Bn−An+1]−
)

e−ηTn+1|C0 = γ
]
,

using the independence assumptions and the fact that Tn+1 = Tn + An+1. If we multiply
by rn+1 and sum over n this yields for Re(φ) = 0 and (|r| < 1, Re(η) ≥ 0, γ ≥ 0) or
(|r| ≤ 1, Re(η) > 0, γ ≥ 0),

Z(r, φ, η, γ) − E
[
e−φW0 |C0 = γ

]
= rZ(r, φ, η, γ)A(η − φ)B(φ) + V (r, φ, η, γ)

noting that T0 = 0 and using the independence of the service times and inter-arrival times
and, we get (3.3), using (3.2).

�

It can be shown, see Cohen[17], that for fixed (|r| < 1, Re(η) ≥ 0) or (|r| ≤ 1, Re(η) >
0), the function 1 − rA(η − φ)B(φ) can be factorized, i.e. for Re(φ) = 0,

1 − rA(η − φ)B(φ) = K+(r, φ, η)K−(r, φ, η), (3.5)

where, in the complex φ plane, K+(r, φ, η) satisfies conditions Ã+ and K−(r, φ, η) satisfies
conditions Ã−. Then, from (3.3) we obtain for fixed (|r| < 1, Re(η) ≥ 0, γ ≥ 0) or
(|r| ≤ 1, Re(η) > 0, γ ≥ 0) and Re(φ) = 0,

Z(r, φ, η, γ)K+(r, φ, η) =
P γ(φ) [K−(r, φ, η)]

−1

∏k
i=1(φ + wi)γ

+ V (r, φ, η, γ)
[
K−(r, φ, η)

]−1
. (3.6)

In the complex φ plane, the left-hand side of (3.6) satisfies conditions A+ and the second
term of the right-hand side satisfies conditions A−. Suppose we can decompose the first
term of the right hand side of (3.6) into two functions C+ and C− such that for Re(φ) = 0,

P γ(φ)
∏k

i=1(φ + wi)γ

[
K−(r, φ, η)

]−1
= C+(r, φ, η, γ) + C−(r, φ, η, γ), (3.7)
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where C+(r, φ, η, γ) satisfies A+ and C−(r, φ, η, γ) satisfies A−. We then have the following
solution of (3.3).

Theorem 3.3.2
For (|r| < 1, Re(φ) ≥ 0, Re(η) ≥ 0, γ ≥ 0), or (|r| ≤ 1, Re(φ) ≥ 0, Re(η) > 0, γ ≥ 0), or

(|r| ≤ 1, Re(φ) > 0, Re(η) ≥ 0, γ ≥ 0),we have

Z(r, φ, η, γ) =
[
C+(r, φ, η, γ) + C−(r, 0, η, γ)

] [
K+(r, φ, η)

]−1
. (3.8)

Proof. From (3.6) and (3.7) we have

Z(r, φ, η, γ)K+(r, φ, η) − C+(r, φ, η, γ) = C−(r, φ, η, γ)

+ V (r, φ, η, γ)
[
K−(r, φ, η)

]−1
.

(3.9)

The left-hand side of (3.9) satisfies A+ and the right-hand side satisfies A−. By analytic
continuation in the complex φ plane, we can define an entire function which is equal to the
left-hand side for Re(φ) ≥ 0 and equal to the right-hand side for Re(φ) ≤ 0. This entire
function is bounded, and hence by Liouville’s theorem, it is a constant. So, for Re(φ) ≥ 0

Z(r, φ, η, γ)K+(r, φ, η) − C+(r, φ, η, γ) = Z(r, 0, η, γ)K+(r, 0, η) − C+(r, 0, η, γ)

= C−(r, 0, η, γ) + 0,
(3.10)

with (|r| ≤ 1, Re(η) > 0, γ ≥ 0) or (|r| < 1, Re(η) ≥ 0, γ ≥ 0), which proves the theorem.
�

If ρ < 1 and both

K+(1, φ, 0) = lim
r↑1

K+(r, φ, 0) and K−(1, φ, 0) = lim
r↑1

K−(r, φ, 0)

exist for Re(φ) ≥ 0, then from (3.8), in using Abel’s theorem, the Laplace-Stieltjes trans-
form of the steady-state waiting time distribution for Re(φ) ≥ 0 is given by

Z(φ) = lim
r↑1

(1 − r)Z(r, φ, 0, γ)

=

[
lim
r↑1

(1 − r)
[
C+(r, φ, 0, γ) + C−(r, 0, 0, γ)

]] [
K+(1, φ, 0)

]−1
.

(3.11)

The explicit expression for Z(φ) can then be found once we have explicit expressions for
K+(r, φ, η), K−(r, φ, η), C+(r, φ, η, γ), and C−(r, φ, η, γ).

3.4 The distribution of the virtual waiting time

Let the number of arrivals in the interval (0, t] be denoted by

Nt = sup{n = 1, 2, . . . | Tn ≤ t}
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and let

Ut = WNt + BNt − (t − TNt).

Then the virtual waiting time Vt is given by Vt = U+
t . Notice that the sample paths of Vt

are right-continuous. By the law of total probability we have for Re(φ) ≥ 0, γ ≥ 0,

E
[
e−φUt|C0 = γ

]
= E

[
e−φ[WNt+BNt−(t−TNt )]|C0 = γ

]

=
∞∑

n=0

E
[
e−φ(WNt+BNt−(t−TNt ))1(Tn ≤ t < Tn+1)|C0 = γ

]

=
∞∑

n=0

∫ t

0

e+φ(t−u){1 − F (t − u)}E
(
e−φBn

)

.duE
[
e−φWn1(Tn ≤ u)|C0 = γ

]

= B(φ)
∞∑

n=0

∫ t

0

e+φ(t−u){1 − F (t − u)}

.duE
[
e−φWn1(Tn ≤ u)|C0 = γ

]
,

(3.12)

where 1(A) denotes the indicator function of the event A.

Hence, for Re(η) > Re(φ) ≥ 0, γ ≥ 0, we find

∫ ∞

0

e−ηtE
[
e−φUt|C0 = γ

]
dt

=
B(φ) − A(η − φ)B(φ)

η − φ

∞∑

n=0

E
[
e−φWn−ηTn|C0 = γ

]

=
B(φ) − A(η − φ)B(φ)

η − φ
Z(1, φ, η, γ).

(3.13)

Then, by using identity (3.4), we have for Re(η) > 0, Re(φ) = 0, γ ≥ 0,

Z∗(φ, η, γ) =

∫ ∞

0

e−ηtE
[
e−φVt|C0 = γ

]
dt

=
B(φ) − A(η − φ)B(φ)

η − φ
Z(1, φ, η, γ) +

1

η

−
∫ ∞

0

e−ηtE
[
e−φU−

t |C0 = γ
]
dt.

(3.14)

We now decompose the term B(φ)−A(η−φ)B(φ)
η−φ

Z(1, φ, η, γ), i.e. we determine two functions

D+(φ, η, γ) and D−(φ, η, γ) such that for Re(φ) = 0

B(φ) − A(η − φ)B(φ)

η − φ
Z(1, φ, η, γ) = D+(φ, η, γ) + D−(φ, η, γ), (3.15)



3.4 The distribution of the virtual waiting time 23

where in the complex φ plane, D+(φ, η, γ) satisfies A+ and D−(φ, η, γ) satisfies A−. For
this purpose, we first notice from equation (3.3), that for Re(φ) ≥ 0, Re(η) > 0, γ ≥ 0,

B(φ) − A(η − φ)B(φ)

η − φ
Z(1, φ, η, γ) =

B(φ)Z(1, φ, η, γ)

η − φ
− Z(1, φ, η, γ)

η − φ

+
P (φ)γ

(η − φ)
∏k

i=1(φ + wi)γ
+

V (1, φ, η, γ)

(η − φ)
.

(3.16)

By defining the function

F (φ, η, γ) = B(φ)Z(1, φ, η, γ) − Z(1, φ, η, γ) +
P γ(φ)

∏k
i=1(φ + wi)γ

, (3.17)

for Re(φ) ≥ 0, Re(η) > 0, γ ≥ 0, we can choose

D+(φ, η, γ) =
F (φ, η, γ) − F (η, η, γ)

(η − φ)
(3.18)

and

D−(φ, η, γ) =
F (η, η, γ)

(η − φ)
+

V (1, φ, η, γ)

(η − φ)
(3.19)

With this decomposition, we have the following result.

Theorem 3.4.1
For Re(η) ≥ 0, Re(φ) ≥ 0, γ ≥ 0,

Z∗(φ, η, γ) = D+(φ, η, γ) +
F (η, η, γ)

η
. (3.20)

Proof. With the decomposition (3.15) we can rewrite (3.14) as

Z∗(φ, η, γ) − D+(φ, η, γ) = D−(φ, η, γ) +
1

η

−
∫ ∞

0

e−ηtE
[
e−φU−

t |C0 = γ
]
dt,

(3.21)

where in the complex φ plane the left-hand side of (3.21) satisfies A+ and the right-hand
side satisfies A−. By analytic continuation, we can define an entire function which is equal
to the left-hand side for Re(φ) ≥ 0 and equal to the right-hand side for Re(φ) < 0. This
entire function is bounded, and hence by Liouville’s theorem, it is a constant. Therefore,

Z∗(φ, η, γ) − D+(φ, η, γ) = Z∗(0, η, γ) − D+(0, η, γ)

= D−(0, η, γ) +
1

η
− 1

η

=
F (η, η, γ)

η
,

(3.22)
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and we get (3.20).
�

If ρ < 1 and if the distribution function of the inter-arrival times F is non-lattice, then
the steady-state virtual waiting time distribution exists. Let

Z∗(φ) = lim
t→∞

E
[
e−φVt|C0 = γ

]
.

From Abel’s theorem for Laplace transforms, we obtain

Z∗(φ) = lim
η↓0

ηZ∗(φ, η, γ)

= lim
η↓0

η

[
D+(φ, η, γ) +

F (η, η, γ)

η

]

= lim
η↓0

η

(η − φ)

[
B(φ)Z(1, φ, η, γ) − Z(1, φ, η, γ) +

P γ(φ)
∏k

i=1(φ + wi)γ

]

− lim
η↓0

φ

(η − φ)
F (η, η, γ)

=
1 − B(φ)

φ
lim
η↓0

ηZ(1, φ, η, γ) − lim
η↓0

1 − B(η)

η
· lim

η↓0
ηZ(1, η, η, γ)

= 1 − ρ + ρ
1 − B(φ)

βφ
Z(φ),

(3.23)

a well known relation for the GI/G/1 queue that relates the L-S transforms of the proba-
bility distributions of the virtual and actual waiting time.

3.5 Number of customers at arrival epochs

Let Cn be the number of customers in the system at T−
n , i.e. just before the arrival of

the nth customer. It is clear that

{C0 ≤ j} =

{
impossible event , j = 0, 1, . . . , C0 − 1

Ω , j = C0, C0 + 1, . . . ,

where Ω is the sure event. Furthermore, for n = 1, 2, . . . , j,

{Cn ≤ j} =





{∑C0−(j−n)
i=1 Xi < Tn

}
, j = 1, 2, . . . , C0

Ω , j = C0 + 1, C0 + 2, . . . , &

n = 1, 2, . . . , j − C0

{∑C0−(j−n)
i=1 Xi < Tn

}
, j = C0 + 1, C0 + 2, . . . , &

n = j − C0 + 1, j − C0 + 2, . . . , j
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and

{Cn+j+1 ≤ j} = {Tn + Wn + Bn < Tn+j+1} n = 0, 1, . . . .

Theorem 3.5.1
For |r| < 1, |s| < 1, γ ≥ 0,

U(r, s, γ) =
∞∑

n=0

rnE
[
sCn|C0 = γ

]

=
rsγ+1

(1 − rs)
+ sγ

+
(1 − s)

2πi

∫ i∞+0

−i∞+0

dξ

ξ




srA(−ξ)P (ξ)
[
P γ(ξ) − sγ

∏k
i=1(ξ + wi)

γ
]

X1(r, ξ)X2(s, ξ)
∏k

i=1(ξ + wi)γ




+ (1 − s)
r

2πi

∫ i∞+0

−i∞+0

dξ

ξ
(1 − rsA(−ξ))−1A(−ξ)B(ξ)Z(r, ξ, 0, γ),

(3.24)

where

X1(r, s, ξ) = 1 − srA(−ξ),

and

X2(s, ξ) = P (ξ) − s
k∏

i=1

(ξ + wi).

Proof. For |r| < 1, |s| < 1, γ ≥ 0,

∞∑

n=0

rnE
[
sCn|C0γ

]

= (1 − s)
∞∑

n=0

rn

∞∑

j=0

sjP (Cn ≤ j)

= (1 − s)
∞∑

j=γ

sj + (1 − s)
∞∑

j=γ+1

j−γ∑

n=1

rnsj

+ (1 − s)
∞∑

n=1

n+γ−1∑

j=n

rnsjP




γ−(j−n)∑

i=1

Xi < Tn




+ (1 − s)
∞∑

j=0

∞∑

n=0

rn+j+1sjP (Tn + Wn + Bn < Tn+j+1|C0 = γ).

(3.25)

We use the identity 2.1.3, that is

1(x < 0) +
1

2
1(x = 0) =

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
e−ξx
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to obtain

P




γ−(j−n)∑

i=1

Xi < Tn


 =

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
E
[
e−ξ(

∑γ−(j−n)
i=1 Xi−Tn)

]

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
E
[
e−ξ(

∑γ−(j−n)
i=1 Xi)

]
An(−ξ)

(3.26)

and

P (Tn + Wn + Bn < Tn+j+1|C0 = γ)

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
E
[
e−ξ(Tn+Wn+Bn−Tn+j+1)|C0 = γ

]

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
E
[
e−ξWn|C0 = γ

]
B(ξ)Aj+1(−ξ),

(3.27)

taking into account the independence assumptions. By substituting (3.26) and (3.27) into
(3.25) we obtain for |r| < 1, |s| < 1, γ ≥ 0,

∞∑

n=1

rnE
[
sCn|C0 = γ

]

=(1 − s)
∞∑

n=1

n+γ−1∑

j=n

rnsj 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
E
[
e−ξ(

∑γ−(j−n)
i=1 Xi)

]
An(−ξ)

+
rsγ+1

(1 − rs)
+ sγ

+ (1 − s)
1

2πi
r

∫ i∞+0

−i∞+0

dξ

ξ
(1 − rsA(−ξ))−1A(−ξ)B(ξ)Z(r, ξ, 0, γ).

(3.28)

Since the r.v.’s Xi, i = 1, . . . , γ, are independent the first term of the right-hand side
of (3.28) can be written as

(1 − s)
∞∑

n=1

n+γ−1∑

j=n

rnsj 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
E
[
e−ξX1

](γ−j+n)
An(−ξ)

=
(1 − s)

2πi

∫ i∞+0

−i∞+0

dξ

ξ
Pγ(ξ)

∞∑

n=1

n+γ−1∑

j=n

(rA(−ξ)P(ξ))n

(
s

P(ξ)

)j

=
(1 − s)

2πi

∫ i∞+0

−i∞+0

dξ

ξ
Pγ(ξ)

srA(−ξ)

1 − srA(−ξ)

γ−1∑

j=0

(
s

P(ξ)

)j

=
(1 − s)

2πi

∫ i∞+0

−i∞+0

dξ

ξ

rA(−ξ)P(ξ)s [Pγ(ξ) − sγ]

(1 − srA(−ξ)) (P(ξ) − s)

=
(1 − s)

2πi

∫ i∞+0

−i∞+0

dξ

ξ

srA(−ξ)P (ξ)[P γ(ξ) − sγ
∏k

i=1(ξ + wi)
γ]

(1 − srA(−ξ))(P (ξ) − s
∏k

i=1(ξ + wi))
∏k

i=1(ξ + wi)γ
.

(3.29)
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By inserting (3.29) into (3.28), the proof is completed.
�

The generating function of the nth moment of number of customers at arrival epochs
can be derived from (3.24). For the first moment one obtains the following relation. For
|r| < 1, γ ≥ 0,

U(r, γ) =
∞∑

n=0

rnE [Cn|C0 = γ]

=
γ

1 − r
+

r

(1 − r)2

− r

2πi

∫ i∞+0

−i∞+0

dξ

ξ

A(−ξ)

1 − rA(−ξ)

γ∑

j=1

Pj(ξ)

− r

2πi

∫ i∞+0

−i∞+0

dξ

ξ
[1 − rA(−ξ)]−1A(−ξ)B(ξ)Z(r, ξ, 0, γ).

(3.30)

The first integral can be evaluated using contour integration leading to the following
theorem.

Theorem 3.5.2
For r < 1, γ ≥ 0, and wi 6= wj for i 6= j

U(r, γ) =γ +
r

(1 − r)2

− r

γ∑

j=1

1

(j − 1)!

k∑

i=1

dj

dξj

[
A(−ξ)P (ξ)j

ξ(1 − rA(−ξ))
∏k

n=1,n 6=i(ξ + wn)j

]

ξ=−wi

− r

2πi

∫ i∞+0

−i∞+0

dξ

ξ
[1 − rA(−ξ)]−1 A(−ξ)B(ξ)Z(r, ξ, 0, γ).

(3.31)

Proof. We want to evaluate the first integral in (3.29) using Cauchy’s residue theorem.
Consider a closed contour consisting of the line segment [−iR + δ, iR + δ], δ > 0, parallel
to the imaginary axis in the complex ξ plane and a left semi-circle ΓR closing the contour.
The integrand has a simple pole at ξ = 0 and in view of (3.1) has poles in ξ = −wi, i =
1, 2, . . . , k, each of which occurs with orders j = 1, 2, . . . , γ, since wi 6= wj(i 6= j) by
assumption. Observe that 1 − rA(−ξ) 6= 0 within the closed contour.

The residue at ξ = 0 equals γ
1−r

, since P(0) = 1 and A(0) = 1. The residue at ξ = −wi,

aij say, corresponding to P(ξ)j, cf. (3.1), equals

aij =
1

(j − 1)!

dj

dξj


 A(−ξ)P (ξ)j

ξ(1 − rA(−ξ))
∏k

n=1
n6=i

(ξ + wn)j




ξ=−wi

.

Hence, letting f(ξ) denote the integrand of the integral, we obtain

∫ i∞+0

−i∞+0

f(ξ)dξ +

∫

ΓR

f(ξ)dξ =
rγ

1 − r
+ r

γ∑

j=1

k∑

i=1

aij
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Now observe that

|
γ∑

j=1

P(ξ)| = O

(
1

|ξ|

)
as |ξ| → ∞

and |A(−ξ)| ≤ M for Re(ξ) < δ.

Hence

lim
R→∞

∫

ΓR

f(ξ)dξ = 0

and the assertion follows after some simple calculations.
�

Theorem 3.5.2 will be used in section 3.7 where an explicit expression for the last
integral in the right-hand side of (3.31) is derived.

The process {Cn, n = 0, 1, . . .} is regenerative with the same regeneration points as
the process {Wn, n = 0, 1, . . .}, because the events {Cn = 0} and {Wn = 0} are identical.
Therefore {Cn} converges weakly to a random variable C iff ρ < 1. By using Abel’s theorem
and (3.11), we have for ρ < 1,

E
[
sC
]

=
(1 − s)

2πi

∫ i∞+0

−i∞+0

dξ

ξ
(1 − sA(−ξ))−1A(−ξ)B(ξ)Z(ξ),

and

E[C] = − 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
(1 − A(−ξ))−1A(−ξ)B(ξ)Z(ξ). (3.32)

In section 3.7, where we have an explicit expression for A(−ξ) or B(ξ), the integral can be
calculated, and we will get a closed-form expression for E[C].

3.6 Number of customers in continuous time

Let C∗
t be the number of customers at time t. The process (C∗

t ) is defined to be left-
continuous. Then by partitioning the event {C∗

t ≤ j} with respect to the number of
customers that enter the system in (0, t], we have for j = 0, 1, . . . , C0,

{C∗
t ≤ j} =

C0⋃

n=C0−j+1

{
n∑

i=1

Xi < t,Nt = j − C0 − 1 + n

}
∪

∞⋃

n=C0+1

{Tn−C0−1 + Wn−C0−1 + Bn−C0−1 < t,Nt = j − C0 − 1 + n}

=

C0⋃

n=C0−j+1

{
n∑

i=1

Xi < t, Tj−C0−1+n ≤ t < Tj−C0+n

}
∪

∞⋃

n=0

{Tn + Wn + Bn < t, Tj+n ≤ t < Tj+n+1},
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and for j = C0 + 1, C0 + 2, . . . ,

{C∗
t ≤ j} = {Nt ≤ j − C0 − 1}∪

C0⋃

n=1

{
n∑

i=1

Xi < t,Nt = j − C0 − 1 + n

}
∪

∞⋃

n=C0+1

{Tn−C0−1 + Wn−C0−1 + Bn−C0−1 < t,Nt = j − C0 − 1 + n}

= {t < Tj−C0}

∪
C0⋃

n=1

{
n∑

i=1

Xi < t, Tj−C0−1+n ≤ t < Tj−C0+n

}

∪
∞⋃

n=0

{Tn + Wn + Bn < t, Tj+n ≤ t < Tj+n+1}.

This leads to

∫ ∞

0

e−ηtE
[
sC∗

t |C0 = γ
]
dt

= (1 − s)
∞∑

j=0

sj

∫ ∞

0

e−ηtP (C∗
t ≤ j|C0 = γ) dt

= (1 − s)

γ∑

j=0

sj

γ∑

n=γ+1−j

∫ ∞

0

e−ηtP

(
n∑

i=1

Xi < t, Tj−γ−1+n ≤ t < Tj−γ+n

)
dt

+ (1 − s)

γ∑

j=0

sj

∞∑

n=0

∫ ∞

0

e−ηtP (Tn + Wn + Bn < t, Tj+n ≤ t < Tj+n+1) dt

+ (1 − s)
∞∑

j=0

sj+γ+1

∫ ∞

0

e−ηtP (t < Tj+1) dt

+ (1 − s)
∞∑

j=0

sj+γ+1

γ∑

n=1

∫ ∞

0

e−ηtP

(
n∑

i=1

Xi < t, Tj+n ≤ t < Tj+n+1

)
dt

+ (1 − s)
∞∑

j=γ+1

sj

∞∑

n=0

∫ ∞

0

e−ηtP (Tn + Wn + Bn < t, Tj+n ≤ t < Tj+n+1) dt,

for |s| < 1, γ ≥ 0.

Upon combining the first and fourth term and the second and fifth term one obtains for
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|s| < 1, γ ≥ 0,

∫ ∞

0

e−ηtE[sC∗
t |C0 = γ]dt

= (1 − s)

[
∞∑

j=0

sj+γ+1

∫ ∞

0

e−ηtP (Tj+1 > t)dt

+
∞∑

j=0

sj

∞∑

n=0

∫ ∞

0

e−ηtP (Tn + Wn + Bn < t, Tj+n ≤ t < Tj+n+1|C0 = γ)dt

+

γ∑

n=1

∞∑

j=0

sj+γ−n+1

∫ ∞

0

e−ηtP (
n∑

i=1

Xi < t, Tj ≤ t < Tj+1)dt

]
.

(3.33)

By using the identity 2.1.3 on page 10 it follows that for Re(η) > Re(ξ) > 0, γ ≥ 0,

∫ ∞

0

e−ηtE
[
sC∗

t |C0 = γ
]
dt

=
sγ+1

η
− (1 − s)

sγ+1

η

A(η)

(1 − sA(η))

+ (1 − s)
∞∑

j=0

sj

∞∑

u=0

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∫ ∞

0

e−ηt

∫ t

u=0

{1 − F (t − u)}

duE[e−ξ(Tn−t+Wn+Bn)1(Tn+j ≤ u)|C0 = γ]dt

+ (1 − s)

γ∑

n=1

∞∑

j=0

sj+γ−1+n 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∫ ∞

0

e−ηt

∫ t

u=0

{1 − F (t − u)}

duE[e−ξ(
∑n

i=1 Xi−t)1(Tj ≤ u)]dt

=
sγ+1

η
− (1 − s)

sγ+1

η

A(η)

1 − sA(η)

+ (1 − s)
∞∑

j=0

sj

∞∑

n=0

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

1 − A(η − ξ)

η − ξ
B(ξ)

∫ ∞

0

e−(η−ξ)uduE

(e−ξ(Tn+Wn)1(Tn+j ≤ u)|C0 = γ)

+
(1 − s)

2πi

γ∑

n=1

∞∑

j=0

sj+γ−1+n

∫ i∞+0

−i∞+0

dξ

ξ

1 − A(η − ξ)

η − ξ
E(e−ξ

∑n
i=1 Xi)Aj(η − ξ)

=
sγ+1

η
− (1 − s)

sγ+1

η

A(η)

1 − sA(η)

+
(1 − s)

2πi

∫ i∞+0

−i∞+0

dξ

ξ

1 − A(η − ξ)

η − ξ
B(ξ)

Z(1, ξ, η, γ)

1 − sA(η − ξ)

+
(1 − s)

2πi

∫ i∞+0

−i∞+0

dξ

ξ
· 1 − A(η − ξ)

η − ξ
· sγP(ξ)

1 − sA(η − ξ)
· 1 − sγP(ξ)γ

1 − sP(ξ)
.

(3.34)
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The Laplace transform of the nth moments of C∗
t can be derived from (3.34). For the

first moment we obtain, with Re(η) > Re(ξ) > 0, γ ≥ 0,
∫ ∞

0

e−ηtE [C∗
t |C0 = γ] dt =

γ + 1

η
+

A(η)

η(1 − A(η))

− 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

B(ξ)Z(1, ξ, η, γ)

(η − ξ)

− 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

P(ξ)

η − ξ
· 1 − P(ξ)γ

1 − P(ξ)
.

(3.35)

Since B(ξ),P(ξ) and Z(1, ξ, η, γ) are regular functions in the right half-plane Re(ξ) > 0
and, moreover |P(ξ)| < 1 for Re(ξ) > 0, and noting also that the integrands tends to zero
sufficiently fast for |ξ| → ∞ if Re(ξ) > 0, it follows from contour integration that for
Re(η) > 0, γ ≥ 0,

∫ ∞

0

e−ηtE [C∗
t |C0 = γ] dt =

γ + 1

η
+

A(η)

η(1 − A(η))

− B(η)Z(1, η, η, γ)

η
− 1

η
P(η)

1 − P(η)γ

1 − P(η)
.

(3.36)

The process {C∗
t , t ≥ 0} is regenerative with the same regeneration epochs as {Vt, t ≥

0}. Consequently, (C∗
t ) converges for t → ∞ to a stationary random variable C∗ iff ρ < 1

and the interarrival time distribution is non-lattice. We find from (3.34) for |s| < 1,

E
[
sC∗]

=
(1 − s)

2πi

∫ i∞+0

−i∞+0

dξ

ξ
lim
η↓0

ηB(ξ)(1 − A(η − ξ))Z(1, ξ, η, γ)

(η − ξ)(1 − sA(η − ξ))
. (3.37)

Since we have assumed that there exists a δ > 0 such that B(φ) can be continued analyti-
cally into the region Re(δ) > −δ, then the same applies to Z(1, φ, η, γ). Notice that

lim
η↓0

(1 − A(η))

η(1 − sA(η))
lim
η↓0

ηZ(1, 0, η, γ)

= lim
η↓0

−A′(η)

(1 − sA(η)) − sηA′(η)
lim
η↓0

ηZ(1, 0, η, γ)

=
α

(1 − s)
lim
η↓0

ηZ(1, 0, η, γ).

(3.38)

Now we have for |s| < 1,

E
[
sC∗]

= α lim
η↓0

ηZ(1, 0, η, γ)

+
(1 − s)

2πi

∫ i∞−0

−i∞−0

dξ

ξ
lim
η↓0

ηB(ξ)(1 − A(η − ξ))Z(1, ξ, η, γ)

(η − ξ)(1 − sA(η − ξ))
,

(3.39)

and it yields

E[C∗] = − 1

2πi

∫ i∞−0

−i∞−0

dξ

ξ

B(ξ)

ξ
lim
η↓0

ηZ(1, ξ, η, γ). (3.40)

Here we also need the expression for limη↓0 ηZ(1, ξ, η) to analyze the integral in (3.40). For
this reason, the further study will be done in section 3.7.
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3.7 The systems GI/Kn/1 and Km/G/1

In this section, we study the two special cases of GI/G/1 in which either the inter-
arrival time distribution or the service time distribution has a rational Laplace-Stieltjes
transform. For these cases, the factorization of (3.5) can be done easily, and it yields
explicit expressions for (3.11),(3.23), (3.32), and (3.40).

3.7.1 The system GI/Kn/1

The Laplace-Stieltjes transform of the service time for this model has the form

B(φ) =
B1(φ)∏n

i=1(φ + µi)
,

where Re(µi) > 0, i = 1, 2, . . . , n, and B1(φ) is a polynomial of degree (n− 1) or less. Now
we have

1 − rA(η − φ)B(φ) =

∏n
i=1(φ + µi) − rA(η − φ)B1(φ)∏n

i=1(φ + µi)
. (3.41)

For δ > 0, consider the contour C−
δ,R in the complex φ plane. For |r| < 1 and Re(η) ≥ 0

or |r| ≤ 1 and Re(η) > 0 with φ ∈ C−
δ,R, then for R large enough

|rA(η − φ)B1(φ)| < |
n∏

i=1

(φ + µi)| with |φ| = R,Re(φ) < 0.

Moreover, since for Re(φ) = −δ and Re(η) ≥ 0

|rA(η − φ)B(φ)| ≤ |r|A(Re(η − φ))B(Re(φ))

≤ |r|A(δ)B(−δ).

Since
A(δ)B(−δ) = 1 + α(1 − ρ)δ + o(δ), δ ↓ 0, ρ = β/α

it follows that

|rA(η − φ)B1(φ)| < |
n∏

i=1

(φ + µi)| with Re(φ) = −δ

for |r| < 1 or |r| = 1, ρ < 1. Hence, by Rouché’s theorem the function (3.40) has exactly
n zeros λi(r, η), i = 1, 2, . . . , n in the left half-plane Re(φ) < 0 if (|r| < 1, Re(η) ≥ 0) or
(|r| = 1, ρ < 1, Re(η) ≥ 0). These zeros are continuous in r for |r| ≤ 1, so that

lim
r↑1

λi(r, η) = λi(1, η).

It follows that

1 − rA(η − φ)B(φ) = K+(r, φ, η)K−(r, φ, η), Re(φ) = 0,
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with

K−(r, φ, η) =

∏n
i=1(φ + µi) − rA(η − φ)B1(φ)∏n

i=1(φ − λi(r, η))
(3.42)

and

K+(r, φ, η) =
n∏

i=1

(φ − λi(r, η))

(φ + µi)
. (3.43)

It is clear that K+(r, φ, η) satisfies Ã+ and K−(r, φ, η) satisfies Ã−. For the decomposition
indicated in (3.7) we impose the following condition.

Condition 3.7.1
−wi and λj(r, η), i = 1, 2, . . . , k, j = 1, 2, . . . , n, are all distinct.

We expand (3.2) into partial fractions

P γ(φ)
∏k

i=1(φ + wi)γ
=

k∑

i=1

γ∑

j=1

qij

(φ + wi)j
(3.44)

where

qij =
1

(γ − j)!

dγ−j

dφγ−j

[
P γ(φ)

∏k
n=1,n 6=i(φ + wn)γ

]

φ=−wi

(3.45)

Notice that
∑k

1

∑γ
1 qij/w

j
i = 1, since P(0) = 1.

Let

h
(j)
i (r, η) =

1

j!

dj

dφj

[
K−(r, φ, η)

]−1 |φ=−wi
(3.46)

where h
(0)
i (r, η) = [K−(r,−wi, η)]−1.

To find the decomposition for C+(r, φ, η, γ) and C−(r, φ, η, γ), see (3.7), we now choose

C−(r, φ, η, γ) =
k∑

i=1

γ∑

j=1

qij

(φ + wi)j

{
[
K−(r, φ, η)

]−1 −
j−1∑

l=0

h
(l)
i (r, η)(φ + wi)

l

}
(3.47)

and

C+(r, φ, η, γ) =
k∑

i=1

γ∑

j=1

j−1∑

l=0

qij
h

(l)
i (r, η)

(φ + wi)j−l
. (3.48)

Since K−(r, φ, η) satisfies Ã− in the φ plane, it is readily seen that as a function of φ,
C+(r, φ, η, γ) satisfies A+ and C−(r, φ, η, γ) satisfies A−.
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The actual waiting time

From (3.8), (3.43), (3.47) and (3.48) we have for (|r| < 1, Re(φ) ≥ 0, Re(η) ≥ 0, γ ≥ 0, ),
or (|r| ≤ 1, Re(φ) ≥ 0, Re(η) > 0, γ ≥ 0), or (|r| ≤ 1, Re(φ) > 0, Re(η) ≥ 0, γ ≥ 0),

Z(r, φ, η, γ) =
n∏

i=1

(φ + µi)

(φ − λi(r, η))

k∑

j=1

γ∑

l=1

l−1∑

m=0

qjl

h
(m)
j (r, η)

(φ + wj)l−m

+
n∏

i=1

(φ + µi)

(φ − λi(r, η))
C−(r, 0, η, γ).

(3.49)

To find the distribution of actual waiting times Wn, we consider the function Z(r, φ, η, γ)
for η = 0. This function is a rational function in φ, so that we can invert it analytically to
obtain the generating function

G(r, x, γ) =
∞∑

m=0

rmP (Wm ≤ x|C0 = γ), |r| < 1, x ≥ 0, γ ≥ 0. (3.50)

For this inversion, let us define

pi =

∏n
j=1(λi(r, 0) + µj)

λi(r, 0)
∏n

j=1,j 6=i(λi(r, 0) − λj(r, 0))
, (3.51)

Then by using (A.3) and (3.51) we have for |r| < 1, x ≥ 0,

G(r, x, γ) =
1

(1 − r)
+

n∑

i=1

pi

(
C−(r, 0, 0, γ) + C+(r, λi(r, 0), 0, γ)

)
eλi(r,0)x

+
k∑

i=1

γ∑

j=1

j−1∑

m=0

q−1
ij h

(m)
i (r, η)

l−m∑

l=1

Φl(−wi)x
l−m−1e−wjx

(j − m − l)!(l − 1)!
,

(3.52)

where

Φl(φ) =
∂l−1

∂φl−1

(
1

φ
K+(r, φ, 0)

)−1

.

By a numerical inversion of (3.52), we get the distribution function P (Wn ≤ x).

For ρ < 1, we consider the steady-state distribution of the waiting times. For this
purpose, let

λ̂i(1) = lim
r↑1

λ̂i(r) = lim
r↑1

λi(r, 0), i = 1, . . . , n,

where the existence of the limit is discussed on page 32.
By definition we see that for j = 1, 2, . . . , k,

lim
r↑1

(1 − r)
(
K−(r,−wj, η)

)−1
= 0.
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That implies
lim
r↑1

(1 − r)C+(r, φ, 0, γ) = 0.

Moreover, since
∑k

1

∑γ
1 qij/w

j
i = 1,

lim
r↑1

(1 − r)C−(r, 0, 0, γ) =
n∏

i=1

−λ̂i(1)

µi

.

Then from (3.11) and by using Abel’s theorem we have

Z(φ) = lim
m→∞

E
[
e−φWm|C0 = γ

]
=

n∏

i=1

(φ + µi)(−λ̂i(1))

µi(φ − λ̂i(1))
, Re(φ) ≥ 0. (3.53)

This result is in accordance with a result in [24].

The virtual waiting time

By inserting (3.17) into (3.49), we have for this system

F (φ, η, γ) =
B1(φ)∏n

i=1(φ − λi(1, η))

[
k∑

i=1

γ∑

j=1

j−1∑

l=0

qij
h

(l)
i (1, η)

(φ + wi)j−l

]

+
B1(φ)∏n

i=1(φ − λi(1, η))
C−(1, 0, η, γ)

−
n∏

i=1

(φ + µi)

(φ − λi(1, η))

[
k∑

i=1

γ∑

j=1

j−1∑

l=0

qij
h

(l)
i (1, η)

(φ + wi)j−l

]

−
n∏

i=1

(φ + µi)

(φ − λi(1, η))
C−(1, 0, η, γ) +

P (φ)γ

∏k
i=1(φ + wi)γ

.

(3.54)

Then, by inserting (3.54) and (3.18) into (3.20) we obtain for (Re(φ) ≥ 0, Re(η) > 0, γ ≥ 0)
or (Re(φ) > 0, Re(η) ≥ 0, γ ≥ 0),

Z∗(φ, η, γ) =
B1(φ)

(η − φ)
∏n

i=1(φ − λi(1, η))

[
k∑

i=1

γ∑

j=1

j−1∑

l=0

qij
h

(l)
i (1, η)

(φ + wi)j−l

]

+
B1(φ)

(η − φ)
∏n

i=1(φ − λi(1, η))
C−(1, 0, η, γ)

− 1

(η − φ)

n∏

i=1

(φ + µi)

(φ − λi(1, η))

[
k∑

i=1

γ∑

j=1

j−1∑

l=0

qij
h

(l)
i (1, η)

(φ + wi)j−l

]

− 1

(η − φ)

n∏

i=1

(φ + µi)

(φ − λi(1, η))
C−(1, 0, η, γ)

+
P (φ)γ

(η − φ)
∏k

i=1(φ + wi)γ
− F (η, η, γ)

(η − φ)
+

F (η, η, γ)

η
.

(3.55)
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Again, we get a rational function in φ that allows us to invert it with respect to this variable
analytically to find an explicit expression for the Laplace transform

z̃(x, η, γ) =

∫ ∞

0

e−ηtP (Vt ≤ x|C0 = γ)dt, x ≥ 0, Re(η) ≥ 0, γ ≥ 0. (3.56)

By defining

si(η) =
B1(λi(1, η))

λi(1, η)(η − λi(1, η))
∏n

j=1,j 6=i(λi(1, η) − λj(1, η))

and

ti(η) =

∏n
j=1(λi(1, η) + µj)

λi(1, η)(η − λi(1, η))
∏n

j=1,j 6=i(λi(1, η) − λj(1, η))
,

we have for x ≥ 0, Re(η) ≥ 0, γ ≥ 0,

z̃(x, η, γ) =
1

η
+

n∑

i=1

(si(η) − ti(η))(C+(1, λi(1, η, γ), η) + C−(1, 0, η, γ))eλi(1,η)x

+
k∑

i=1

γ∑

j=1

j−1∑

l=0

qijh
(l)
i (1, η)

j−l∑

m=1

Φ1m(−wi, η)xj−l−me−wix

(j − l − m)!(m − 1)!

−
k∑

i=1

γ∑

j=1

j−1∑

l=0

qijh
(l)
i (1, η)

j−l∑

m=1

Φ2m(−wi, η)xj−l−me−wix

(j − l − m)!(m − 1)!

+
k∑

i=1

γ∑

j=1

Φ3ij(−wi, η, γ)xγ−je−wix

(γ − j)!(j − 1)!
,

(3.57)

where

Φ1m(φ, η) =
∂m−1

∂φm−1

[
B1(φ)

φ(η − φ)
∏n

m=1(φ − λm(1, η))

]
,

Φ2m(φ, η) =
∂m−1

∂φm−1

[
1

φ(η − φ)

n∏

i=1

(φ + µi)

(φ − λi(1, η))

]
,

Φ3ij(φ, η, γ) =
∂lj−1

∂φj−1

[
P (φ)γ

φ(η − φ)
∏n

m=1,m6=i(φ + wm)γ

]
.

The Laplace-Stieltjes transform of the probability distribution function of the virtual
waiting time in steady state is easily found from (3.23) by substituting the expression for
Z(φ) in (3.53) obtaining for Re(φ) ≥ 0,

Z∗(φ) = 1 − ρ + Z(φ)
1 − B(φ)

αφ

= 1 − ρ +
n∏

i=1

(−λ̂i(1))

(µi)(φ − λ̂i(1))

(
∏n

j=1(φ + µj) − B1(φ))

αφ
,

(3.58)
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as given in de Smit[24]. By inverting the Laplace-Stieltjes transform (3.58) we obtain the
probability distribution function of the virtual waiting time in steady state. As a result,
we have for x ≥ 0,

P (V ≤ x) =1 − ρ +
1

α

n∏

j=1

(−λ̂j(1))

µj

n∑

i=1

(
∏n

j=1(λ̂i(1) + µj) − B1(λ̂i(1)))eλ̂i(1)x

λ̂i(1)2
∏

j=1,j 6=i(λ̂i(1) − λ̂j(1))

+
1

α

(
n∑

i=1

1

µi

− B′
1(0)∏n
i=1 µi

)
.

(3.59)

Number of customers at arrival epochs

For the queueing system under consideration, the integral in the third term of (3.31)
would be

∫ i∞+0

−i∞+0

dξ

ξ
(1 − rA(−ξ))−1A(−ξ)B(ξ)Z(r, ξ, 0, γ)

=

∫ i∞+0

−i∞+0

dξ

ξ

A(−ξ)B1(ξ) [C+(r, ξ, 0, γ) + C−(r, 0, 0, γ)]

(1 − rA(−ξ))
∏n

i=1(ξ − λi(r, 0))

= 2πi

n∑

i=1

A(−λi(r, 0))B1(λi(r, 0)) [C+(r, λi(r, 0), 0, γ) + C−(r, 0, 0, γ)]

λi(r, 0)(1 − rA(−λi(r, 0)))
∏n

j=1,j 6=i(λi(r, 0) − λj(r, 0))

+ 2πi
k∑

i=1

∂γ

∂ξγ

(
A(−ξ)B1(ξ)pi (K

−(1,−wi, 0))
−1

ξ(1 − rA(−ξ))
∏n

j=1(ξ − λj(1, 0))

)∣∣∣∣∣
ξ=−wi

∣∣∣∣∣
ξ=−wi

∣∣∣∣∣
ξ=−wi

.

(3.60)

If we substitute this into (3.31) we obtain for |r| ≤ 1, γ ≥ 0,

U(r, γ) =γ +
r

(1 − r)2

− r

γ∑

j=1

1

(j − 1)!

k∑

i=1

dj

dξj

[
A(−ξ)P (ξ)j

ξ(1 − rA(−ξ))
∏k

n=1,n 6=i(ξ + wn)j

]

ξ=−wi

− r
n∑

i=1

A(−λi(r, 0))B1(λi(r, 0)) [C+(r, λi(r, 0), 0, γ) + C−(r, 0, 0, γ)]

λi(r, 0)(1 − rA(−λi(r, 0)))
∏n

j=1,j 6=i(λi(r, 0) − λj(r, 0))

−
k∑

i=1

∂γ

∂ξγ

(
A(−ξ)B1(ξ)pi (K

−(1,−wi, 0))
−1

ξ(1 − rA(−ξ))
∏n

j=1(ξ − λj(1, 0))

)∣∣∣∣∣
ξ=−wi

∣∣∣∣∣
ξ=−wi

∣∣∣∣∣
ξ=−wi

,

(3.61)

and if we invert it we get E[Cn], n = 0, 1, · · · . Meanwhile, from (3.32), the expectation of
steady-state number of customers at arrival epochs is

E[C] = −1 −
n∑

i=1

A(−λ̂i(1))B1(λ̂i(1))
[
C+(1, λ̂i(1), 0, γ) + C−(1, 0, 0, γ)

]

λ̂i(1)(1 − A(−λ̂i(1)))
∏n

j=1,j 6=i(λ̂i(1) − λ̂j(1))

−
k∑

i=1

∂γ

∂ξγ

(
B1(ξ)piK

−(1,−wi, 0)−1

ξ(1 − A(−ξ))
∏n

j=1(ξ − λj(1, 0))

)∣∣∣∣∣
ξ=−wi

∣∣∣∣∣
ξ=−wi

∣∣∣∣∣
ξ=−wi

.

(3.62)



38 The Single Server GI/G/1 queue

Number of customers in continuous time

To get the explicit expression for the expected number of customers in continuous time
in steady-state, we consider the following.

lim
η↓0

ηZ(1, φ, η, γ) = lim
η↓0

η

[
n∏

i=1

(φ + µi)

(φ − λi(1, η))

k∑

j=1

pj
[K−]

−1
(1,−wj, η)

(φ + wj)γ

+
n∏

i=1

(φ + µi)

(φ − λi(1, η))
C−(r, 0, η, γ)

]

= lim
η↓0

η
n∏

i=1

(φ + µi)

(φ − λi(1, η))

∏n
i=1 −λi(1, η)∏n

i=1 µi(1 − A(η))

=
n∏

i=1

(φ + µi)(−λi(1, 0))

µi(−A′(0))(φ − λi(1, 0))

=
1

α

n∏

i=1

(φ + µi)(−λi(1, 0))

µi(φ − λi(1, 0))
.

(3.63)

If we substitute this into (3.40) we obtain

E[C∗]

= − 1

2πiα

∫ i∞−0

−i∞−0

dξ

ξ2
B1(ξ)

n∏

i=1

−λi(1, 0)

(ξ − λi(1, 0))µi

= −
n∏

i=1

(−λ̂i(1))

αµi

[
B′

1(0)
∏n

i=1(−λ̂i(1)) −∏n
i=1 µi

∑n
i=1

∏n
j=1,j 6=i(−λ̂j(1))

∏n
i=1(−λ̂i(1))2

]
.

(3.64)

3.7.2 The system Km/G/1

The Laplace-Stieltjes transform of the inter-arrival times for this model has the form

A(φ) =
A1(φ)∏m

i=1(φ + λi)
,

where Re(λi) > 0, i = 1, 2, . . . ,m, and A1(φ) is a polynomial of degree (m − 1) or less.
Now we have

1 − rA(η − φ)B(φ) =

∏m
i=1(η − φ + λi) − rA1(η − φ)B(φ)∏m

i=1(η − φ + λi)
. (3.65)

With a similar proof as for the case GI/Kn/1, it can be shown that for (|r| < 1, Re(η) ≥ 0)
or (|r| = 1, ρ < 1, Re(η) ≥ 0), the numerator of (3.65) has exactly m zeros in the right
half-plane Re(φ) > 0, which we denote by µ1(r, η), µ2(r, η), . . . , µm(r, η), so that

1 − rA(η − φ)B(φ) = K+(r, φ, η)K−(r, φ, η), Re(φ) = 0,
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with

K+(r, φ, η) =

∏m
i=1(η − φ + λi) − rA1(η − φ)B(φ)∏m

i=1(φ − µi(r, η))
,

and

K−(r, φ, η) =
m∏

i=1

(φ − µi(r, η))

(η − φ + λi)
.

It is clear that K+(r, φ, η) satisfies Ã+ and K−(r, φ, η) satisfies Ã−. We will need the partial
fractions expansion

P (φ)γ

∏k
i=1(φ + wi)γ

[
K−(r, φ, η)

]−1
=

P (φ)γ

∏k
i=1(φ + wi)γ

m∏

i=1

(η − φ + λi)

(φ − µi(r, η))

= P (φ)γ

∏m
j=1(η − φ + λj)

∏k+m
i=1 (φ − ai(r, η))li

=
k+m∑

i=1

li∑

j=1

eij(r, η, γ)

(φ − ai(r, η))li−j+1
,

(3.66)

where

ai(r, η) =

{
−wi for i = 1, . . . k,

µi−k(r, η) for i = k + 1, . . . , k + m,

li =

{
γ for i = 1, . . . k,

1 for i = k + 1, . . . , k + m.

If we denote by

R(φ, η, γ) = P (φ)γ

m∏

j=1

(η − φ + λj)

and

Q(φ, η) =
k+m∏

i=1

(φ − ai(r, η))li ,

then the functions eij(r, η) satisfy

eij(r, η, γ) =
1

(j − 1)!

∂j−1

∂φj−1
(φ − ai(r, η))li

R(φ, η, γ)

Q(φ, η)

∣∣∣∣∣
φ=ai(r,η)

∣∣∣∣∣
φ=ai(r,η)

∣∣∣∣∣
φ=ai(r,η)

. (3.67)

We now choose the following decomposition in (3.7)

C+(r, φ, η, γ) =
k∑

i=1

γ∑

j=1

eij(r, η, γ)

(φ + wi)γ−j+1
,

and

C−(r, φ, η, γ) =
k+m∑

i=k+1

eij(r, η, γ)

φ − µi−k(r, η)
.

It is clear that C+(r, φ, η, γ) satisfies A+ and C−(r, φ, η, γ) satisfies A−.
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The actual waiting time

From (3.8) we have for (|r| < 1, Re(φ) ≥ 0, Re(η) ≥ 0, γ ≥ 0), or (|r| ≤ 1, Re(φ) ≥
0, Re(η) > 0, γ ≥ 0), or (|r| ≤ 1, Re(φ) > 0, Re(η) ≥ 0, γ ≥ 0),

Z(r, φ, η, γ) =

[
k∑

i=1

γ∑

j=1

eij(r, η)

(φ + wi)γ
+ C−(r, 0, η, γ)

]

.

[ ∏m
i=1(φ − µi(r, η))∏m

i=1(η − φ + λi) − rA1(η − φ)B(φ)

]
.

(3.68)

This function, in general, is not rational. Hence, we can not derive an explicit expression
for the generating function G(r, x, γ) from (3.68). We just can get the generating functions
of the kth moments of Wn by differentiating the function Z(r, φ, 0, γ) with respect to the
variable φ.

For ρ < 1, we consider the steady-state distribution of the waiting times. For this
purpose, we need to study the behavior of the zeros µi(r, η) for r ↑ 1 and η = 0. Take
δ > 0 and consider the contour C+

δ,R. Then for R large enough |A(−φ)B(φ)| < 1 on the
semi-circle |φ| = R,Re(φ) < 0, whereas on Re(φ) = −δ,

|A(−φ)B(φ)| ≤ |A(δ)B(−δ)| = (1 − αδ + o(δ))(1 + βδ + o(δ))

= 1 − αδ(1 − ρ) + o(δ), δ ↓ 0.

Hence, |A(−φ)B(φ)| < 1 on Re(φ) = −δ if o(δ)/δ < α(1 − ρ), which will hold for ρ < 1
and δ small enough. With the aid of Rouché’s theorem, we now see that for ρ < 1,
1−A(−φ)B(φ) has a simple zero at the origin, which we denote by µ1(1, 0), and has m−1
zeros in the right half-plane Re(φ) ≥ 0, which we denote by µ2(1, 0), . . . , µm(1, 0). Since
the µi(r, 0) are continuous functions in r for |r| ≤ 1, we may write µi(1, 0) = limr↑1 µi(r, 0),
i = 1, . . . ,m.

By definition, we see that

lim
r↑1

(1 − r)C+(r, φ, 0, γ)K+(r, φ, 0)−1 = 0.

Moreover,

lim
r↑1

(1 − r)C−(r, 0, 0, γ)K+(r, φ, 0)−1

= lim
r↑1

(1 − r)

−ak+1(r, 0)
e(k+1)1(r, 0, γ)K+(r, φ, 0)−1

= lim
r↑1

(1 − r)

−µ1(r, 0)
e(k+1)1(r, 0, γ)K+(r, φ, 0)−1.

(3.69)

To determine this limit, we use the fact 1− rA(−µ1(r, 0))B(µ1(r, 0)) = 0, from which it is
readily verified that

µ′
1(1, 0) = 1/(β − α). (3.70)
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Moreover, from the definition of eij(r, η, γ) in (3.67) we see that

lim
r↑1

e(k+1)1(r, 0, γ) =

∏m
i=1 λi∏m

i=2(−µi(1, 0))
,

which shows that this limit is independent of γ. By combining this result with (3.70) we
obtain

lim
r↑1

(1 − r)C−(r, 0, 0, γ)K+(r, φ, 0)−1 = (β − α)

∏m
i=1 λi∏m

i=2(−µi(1, 0))
K+(1, φ, 0)−1.

Then from (3.11) we have for Re(φ) ≥ 0,

Z(φ) = φ(β − α)

(
m∏

i=2

µi(1, 0) − φ

µi(1, 0)

) ∏m
i=1 λi∏m

i=1(λi − φ) − A1(−φ)B(φ)
(3.71)

in accordance with a result in de Smit[24].

The virtual waiting time

For this system we have for Re(φ) ≥ 0, Re(η) ≥ 0, γ ≥ 0,

F (φ, η, γ) =

[
k∑

i=1

γ∑

j=1

eij(1, η, γ)

(φ + wi)γ
+ C−(1, 0, η, γ)

]

.

[ ∏m
i=1(φ − µi(1, η))∏m

i=1(η − φ + λi) − A1(η − φ)B(φ)

]
B(φ)

−
[

k∑

i=1

γ∑

j=1

eij(1, η)

(φ + wi)γ
+ C−(1, 0, η, γ)

]

.

[ ∏m
i=1(φ − µi(1, η))∏m

i=1(η − φ + λi) − A1(η − φ)B(φ)

]
+

P (φ)γ

∏k
i=1(φ + wi)γ

,

(3.72)

so that for Re(φ) ≥ 0, Re(η) ≥ 0, γ ≥ 0,

Z∗(φ, η, γ) =

[
k∑

i=1

γ∑

j=1

eij(1, η, γ)

(φ + wi)γ
+ C−(1, 0, η, γ)

]

.

[ ∏m
i=1(φ − µi(r))∏m

i=1(η − φ + λi) − A1(η − φ)B(φ)

]
B(φ)

η − φ

−
[

k∑

i=1

γ∑

j=1

eij(1, η, γ)

(φ + wi)γ
+ C−(1, 0, η, γ)

]

.

[ ∏m
i=1(φ − µi(1, η))∏m

i=1(η − φ + λi) − A1(η − φ)B(φ)

]
1

(η − φ)

+
P (φ)γ

(η − φ)
∏k

i=1(φ + wi)γ
− F (η, η, γ)

(η − φ)
+

F (η, η, γ)

η
.

(3.73)
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The time-dependent distribution of the virtual waiting time can be obtained by inverting
this transfom.

The Laplace-Stieltjes transform of the steady-state probability distribution of the vir-
tual waiting time follows from (3.23) and (3.71) and is given by

Z∗(φ) = 1 − ρ + Z(φ)
1 − B(φ)

αφ

= 1 − ρ +
(β − α)

α

(
m∏

i=2

µi(1, 0) − φ

µi(1, 0)

) ∏m
i=1 λi(1 − B(φ))∏m

i=1(λi − φ) − A1(−φ)B(φ)
,

(3.74)

for Re(φ) ≥ 0, ρ < 1. This result is an accordance with a result in de Smit[24].

The number of customers at arrival epochs

The last integral on the right hand side of (3.31) for the system under consideration
becomes

∫ i∞+0

−i∞+0

dξ

ξ
(1 − rA(−ξ))−1A(−ξ)B(ξ)Z(r, ξ, 0, γ)

=

∫ i∞+0

−i∞+0

dξ

ξ

B(ξ)Z(1, ξ, 0, γ)
∏m

i=1(−ξ + λi)∏m
i=1(−ξ + λi) − rA1(−ξ)

.

(3.75)

We have discussed on page 38 that µi(r, 0), i = 1, 2, · · · ,m, are the zeroes of the denomi-
nator of (3.75). Then (3.75) becomes

2πi

m∑

i=1

B(µi(r, 0))Z(1, µi(r, 0), 0, γ)
∏m

j=1(−µi(r, 0) + λj)∏m
j=1,j 6=i(µi(r, 0) − µj(r, 0))

.

If we substitute this into (3.31), then we obtain the explicit expression for the generating
function of the expectations E[Cn|C0 = γ], n = 0, 1, . . . , which for |r| < 1, γ ≥ 0, is given
by

U(r, γ) =γ +
r

(1 − r)2

− r

γ∑

j=1

1

(j − 1)!

k∑

i=1

dj

dξj

[
A(−ξ)P (ξ)j

ξ(1 − rA(−ξ))
∏k

n=1,n 6=i(ξ + wn)j

]

ξ=−wi

− r
m∑

i=1

B(µi(r, 0))Z(1, µi(r, 0), 0, γ)
∏m

j=1(−µi(r, 0) + λj)∏m
j=1,j 6=i(µi(r, 0) − µj(r, 0))

.

(3.76)
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The number of customers in continuous time

For the system under consideration we have the following relations.

lim
η↓0

ηZ(1, φ, η, γ)

= lim
η↓0

η

[
k∑

i=1

γ∑

j=1

eij(1, η, γ)

(φ + wi)γ
+ C−(1, 0, η, γ)

]

.

[ ∏m
i=1(φ − µi(1, η))∏m

i=1(η − φ + λi) − A1(η − φ)B(φ)

]

= 0 + lim
η↓0

ηC−(1, 0, η, γ)

∏m
i=1(φ − µi(1, η))∏m

i=1(η − φ + λi) − A1(η − φ)B(φ)

= lim
η↓0

(
η

k+m∑

i=k+1

ei1(1, η, γ)

−µi−k(1, η)

) ∏m
i=1(φ − µi(1, η))∏m

i=1(η − φ + λi) − A1(η − φ)B(φ)

= lim
η↓0

ηe(k+1)1(1, η, γ)

−µ1(1, η)

∏m
i=1(φ − µi(1, η))∏m

i=1(η − φ + λi) − A1(η − φ)B(φ)
.

(3.77)

To determine this limit, we need to differentiate the equation

1 − A(η − µ1(1, η))B(µ1(1, η)) = 0.

It is readily verified that

lim
η↓0

µ′
1(1, η) =

α

α − β
. (3.78)

By using l’Hôpital’s rule we obtain

lim
η↓0

ηZ(1, φ, η, γ) =
1

α
Z(φ). (3.79)

If we substitute (3.79) into (3.40), we obtain

E[C∗]

=
(α − β)

2πiα

∏m
i=1 λi∏m

i=2 µi(1, 0)

∫ i∞−0

−i∞−0

dξ

ξ
B(ξ)

∏m
i=2(µi(1, 0) − ξ)∏m

i=1(λi − ξ) − A1(−ξ)B(ξ)
.

(3.80)

It is clear that ξ = 0 is a pole of the integrand of order 2. Then for ρ < 1 and since the
probability distribution of An is non-lattice,

E[C∗] =
c(β − α)

α

∏m
i=1 λi∏m

i=2 µi(1, 0)
, (3.81)

where c is the residue of

B(ξ)

ξ

∏m
i=2(µi(1, 0) − ξ)∏m

i=1(λi − ξ) − A1(−ξ)B(ξ)

at ξ = 0.
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3.7.3 Examples

In this section we give some examples of time-dependent distributions of the waiting
times and the number of customers. To get all distribution functions and expectations
of interest, we apply the numerical inversion algorithms proposed in [3] to the related
transforms.

We suppose in all examples that the number of special customers in the system is
C0 = γ. The service time of these special customers is exponentially distributed with mean
2
3
. So that

E
[
e−φW0

]
=

(
1.5

φ + 1.5

)γ

.

1. The system H2/M/1
We suppose that the inter-arrival times have a H2 distribution with Laplace-Stieltjes
transform

A(φ) =
(15 + 4φ)

(3 + φ)(5 + φ)
,

and the service times have an exponential distribution with the Laplace-Stieltjes
transform

B(φ) =
6

φ + 6
.

Note that the traffic intensity ρ = 15
24

. This system is a special case of the GI/Kn/1
system, so we will follow the analysis in sub-section 3.7.1 in order to obtain the
distributions of interest.

The Wiener-Hopf type equation (3.41) for this system is

1 − rA(η − φ)B(φ) =
(3 + η − φ)(5 + η − φ)(φ + 6) − 6r(15 + 4(η − φ))

(3 + η − φ)(5 + η − φ)(φ + 6)
. (3.82)

For η = 0 and r ↑ 1 the numerator of (3.82) has exactly one zero in the left half-plane
Re(φ) < 0, that is λ(1, 0) = −2.162.

The steady-state distribution function of the actual waiting time, from (3.53), is

P (W ≤ x) = −λ(1, 0)

6
+

λ(1, 0) + 6

6

(
1 − eλ(1,0)x

)
.

After following the analysis in sub-section 3.7.1, the distribution function P (Wn ≤ x)
for fixed n can be obtained by inverting the generating function (3.52) numerically,
where we apply the numerical algorithm proposed in [3]. The behavior of Wn for
some values of n is shown in figure 3.1.

The steady-state distribution function of the virtual waiting time follows from (3.58),

P (V ≤ x) = 1 − ρ + ρ
(
1 − eλ(1,0)x

)
.

The distribution function P (Vt ≤ x) for fixed t is obtained by inverting the Laplace
transform (3.57) numerically. The behavior of the distribution function of Vt for some
values of t is shown in figure 3.2.
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Figure 3.1: P (Wn ≤ x|C0 = 2) for some n.

We invert (3.36) numerically to get the expectation of the number of customers in
continuous time. Note from (3.64) that

E [C∗] = − 1

αλ(1, 0)
= 1.7342.

The behavior of E[C∗
t ] as t increases is shown in figure 3.3.
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Figure 3.2: P (Vt ≤ x|C0 = 2) for some t.

Figure 3.3: E[C∗
t |C0 = γ] as t increases, for some values of γ.



3.7 The systems GI/Kn/1 and Km/G/1 47

2. The system H2/D/1
In this example we suppose that the inter-arrival times have a H2 distribution with
the Laplace-Stieltjes transform

A(φ) =
(15 + 4φ)

(3 + φ)(5 + φ)
,

the service times have a deterministic distribution with the Laplace-Stieltjes trans-
form

B(φ) = e−βφ.

Note that the traffic intensity ρ = 15β
4

. This system is a special case of Km/G/1
system, so we will follow the analysis in sub-section 3.7.2 in order to obtain the
distributions of interest.

The Wiener-Hopf type equation (3.65) for this system is

1 − rA(η − φ)B(φ) =
(3 + η − φ)(5 + η − φ) − r(15 + 4(η − φ))e−βφ

(3 + η − φ)(5 + η − φ)
. (3.83)

For fixed η with Re(η) > 0 the numerator of (3.83) has two zeros in the right half-
plane Re(φ) > 0. For this system, we obtain the factors

K+(r, φ, η) =
(3 + η − φ)(5 + η − φ) − r(15 + 4(η − φ))e−βφ

(φ − µ1(r, η))(φ − µ2(r, η))
,

K−(r, φ, η) =
(φ − µ1(r, η))(φ − µ2(r, η))

(3 + η − φ)(5 + η − φ)

For the decomposition in (3.7), we derive a partial fraction expansion of E[e−φW0 ]K−(1, φ, η)−1,
i.e.

E[e−φW0 ]K−(1, φ, η)−1

=
A1(η)

(φ + 1.5)
+

A2(η)

(φ + 1.5)2
+ . . . +

Aγ

(φ + 1.5)γ
+

E1(η)

(φ − µ1(1, η))

+
E2(η)

(φ − µ2(1, η))
,

where the functions Ai(η), E1(η), and E2(η) satisfy (3.67). Then,

C+(r, φ, η, γ) =
A1(η)

(φ + 1.5)
+

A2(η)

(φ + 1.5)2
+ . . . +

Aγ(η)

(φ + 1.5)γ
,

C−(r, φ, η, γ) =
E1(η)

(φ − µ1(1, η))
+

E2(η)

(φ − µ2(1, η))
.

For η = 0 the numerator of (3.83) has a zero at the origin and a zero in the right half
plane Re(φ) > 0. We name these as µ1(1, 0) = 0 and µ2(1, 0). From (3.80) we have

E [C∗] =
(β − α)

α

15c

µ2(1, 0)
,
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where c is the residue of

e−βξ

ξ

(µ2(1, 0) − ξ)

(3 − ξ)(5 − ξ) − (15 − 4ξ)e−βξ

at ξ = 0.

The values of the expected number of customers in steady state for various values of
β are given in the following table.

β ρ E [C∗|C0 = 2]
0.25 0.9375 7.969
0.23 0.825 3.049
0.2 0.75 1.125

The explicit expression for the transform
∫∞

0
e−ηtE[C∗

t |C0 = γ]dt can be obtained by
first substituting the functions [K+(r, φ, η)]−1, C+(r, φ, η, γ), and C−(r, 0, η, γ) into
(3.9), and then by substituting the explicit expression for Z(1, φ, η, γ) into (3.36). We
invert (3.36) numerically to get the expectation of number of customers in continuous
time. We give a result in figure 3.4.

Figure 3.4: E[C∗
t |C0 = γ] with ρ = 0.825 for some values of the number of special customers

γ.
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3. The system E2/M/1

We suppose that the inter-arrival times have a E2 distribution with Laplace-Stieltjes
transform

A(φ) =
82

(8 + φ)2
,

and the service times have an exponential distribution with Laplace-Stieltjes trans-
form

B(φ) =
6

φ + 6
.

The traffic intensity is ρ = 2/3. This system is a special case of the GI/Kn/1 system
and the Km/G/1 system as well, so we could follow the analysis in sub-section 3.7.1
or 3.7.2 in order to obtain the explicit expression for Z(1, φ, η, γ). We then can
substitute the explicit expression into (3.36), and we invert (3.36) numerically to
obtain the expectation of number of customers in continuous time.

We give some results on E[C∗
t |C0 = γ] as t increases for some values of the number

of special customers γ in figure 3.5.

C0=2

C0=1

steady-state value

C0=3

1

2

3

4

5

6

E[C*_t]

0 2 4 6 8 10 12 14 16 18 20
t

 

Figure 3.5: E[C∗
t |C0 = γ] for some values of the number of special customers γ
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4. The system E2/H2/1 with traffic intensity ρ = 0.175

We suppose that the inter-arrival times have an E2 distribution with Laplace-Stieltjes
transform

A(φ) =
62

(6 + φ)2
,

and the service times have an H2 distribution with Laplace-Stieltjes transform

B(φ) =
600 + 35φ

(10 + φ)(60 + φ)
.

The traffic intensity is ρ = 0.175. This system is a special case of the systems
GI/Kn/1 system and Km/G/1.

We give some results on E[C∗
t |C0 = γ] as t increases for some values of the number

of special customers γ in figure 3.6.

steady-state value

C0=1

C0=2

C0=3

0

1

2

3

4

5

2 4 6 8 10 12
t

The system E2/H2/1 with traffic intensity  0.175

Figure 3.6: E[C∗
t |C0 = γ] for some values of the number of special customers γ
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5. The system E2/H2/1 with traffic intensity ρ = 0.8

We suppose that the inter-arrival times have a E2 distribution with Laplace-Stieltjes
transform

A(φ) =
62

(6 + φ)2
,

and the service times have an H2 distribution with Laplace-Stieltjes transform

B(φ) =
15 + 4φ

(3 + φ)(5 + φ)
.

The traffic intensity is ρ = 0.8. This system is an example of the GI/Kn/1 system
and the Km/G/1 system as well.

We give some results on E[C∗
t |C0 = γ] as t increases for some values of the number

of special customers γ in figure 3.7.

Figure 3.7: E[C∗
t |C0 = γ] for some values of the number of special customers γ
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6. The system E2/H2/1 with traffic intensity ρ = 0.9

We suppose that the inter-arrival times have an E2 distribution with Laplace-Stieltjes
transform

A(φ) =
62

(6 + φ)2
,

and the service times have an H2 distribution with Laplace-Stieltjes transform

B(φ) =
20 + 6φ

(2 + φ)(10 + φ)
.

The traffic intensity ρ = 0.9. This system is an example of the GI/Kn/1 system and
the Km/G/1 system as well.

We give some results on E[C∗
t |C0 = γ] as t increases for some values of the number

of special customers γ in figure 3.8.

C0=2

C0=3

C0=1

steady-state value

2

4

6

8

10

E[C*_t]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
t

The system E2/H2/1 with traffic intensity 0.9 

Figure 3.8: E[C∗
t |C0 = γ] for some values of the number of special customers γ

7. The system E2/H2/1 with ρ > 1

We suppose that the inter-arrival times have a E2 distribution with Laplace-Stieltjes
transform

A(φ) =
62

(6 + φ)2
,

and the service times have an H2 distribution with Laplace-Stieltjes transform

B(φ) =
5 + 3φ

(1 + φ)(5 + φ)
.

The traffic intensity ρ = 1.8. Not like the previous examples, here we have an unstable
system.



3.7 The systems GI/Kn/1 and Km/G/1 53

Since, by assumption, the arriving customer at time t = 0 finds C0 special customers
in the system, the number of customers in the system at time t satisfies the relation

C∗
t = C0 + 1 + N(t) −

∫ t

0

1C∗

s−
>0dD(s), (3.84)

where N(t) and D(t) denote the number of arrivals and the number of departures in
(0, t], respectively. Since ρ > 1, the probability to have an infinite busy cycle is posi-
tive, and hence after a finite t∗ we will have an infinite busy cycle. It follows that for
t ≥ t∗,

∫ t

t∗
1C∗

s−
>0dD(s) = D∗(t), where D∗(t) denotes the number of departures in the

interval [t∗, t], and, consequently,
∫ t

0
1C∗

s−
>0dD(s) is a delayed renewal process. Since

the distributions of the inter-arrival times and the service times are non-lattice, then
as a consequence, by applying the second order properties of a renewal process(see
page 47 of Cox[20] or page page 158 of Asmussen[7]), we have for large t,

E[C∗
t |C0 = γ] = γ + 1 + (1/α − 1/β)t +

E[A2
1]

2α2
− E[B2

1 ]

2β2
+ o(1). (3.85)

Inverting (3.36) numerically we get the expectation of number of customers in con-
tinuous time. The result of the inversion, and its behavior with respect to (3.85) can
be seen in figures 3.9 and 3.10.

C0=3 <- (1/alpha –1/beta)*t

C0=1

C0=2

0

5

10

15

20

2 4 6 8 10
t

The system E2/H2/1 with traffic intensity 1.8 

Figure 3.9: E[C∗
t |C0 = γ] for some values of the number of special customers γ, and the

linear function y(t) = (1/α − 1/β)t.
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E[C*t]->

<- (1/alpha –1/beta)*t+3.0–50.0/72.0

0

5

10

15

20

E[C*_t]

2 4 6 8 10
t

The system E2/H2/1 with traffic intensity 1.8 and C0=2

Figure 3.10: E[C∗
t |C0 = 2] and the linear function y(t) = (1/α−1/β)t+C0+1+

E[A2
1]

2α2 −E[B2
1 ]

2β2 .



Chapter 4

The GI/Hm/s queue

4.1 Introduction

In this chapter we consider the many server queue GI/Hm/s, which is described as
follows. Customers arrive at epochs T1, T2, . . . with T1 = 0. The customer arriving at Tn is
called the nth customer. The inter-arrival time between the (n−1)th and the nth customer
is denoted by An = Tn − Tn−1, and the service time of the nth customer is denoted by
Bn, n = 1, 2, . . . . There are s servers and the service discipline is first come, first served.
We assume that An, n = 1, 2, . . . are i.i.d with common distribution function F and mean
α, Bn, n = 1, 2, . . . are i.i.d with a common hyper-exponential distribution

G(x) =

{∑m
i=1 pi(1 − exp(−bix)), x ≥ 0

0, x < 0,

where
∑m

i=1 pi = 1, bi > 0, bi 6= bj, i 6= j. Furthermore, we assume that the sequences An

and Bn are independent.
The customer who arrives at T1 finds upon his arrival C0 other customers in the system.

We call these customers special customers, who we assume are numbered, describing their
priority for service, from 1 up to C0. The service of (some of) the special customers has
just begun at T1. Furthermore we assume that these customers have a common exponential
service time with rate w, where w = bj̄ for a fixed j̄, 1 ≤ j̄ ≤ m, and its distribution function
is denoted by I(x).

Let Wn be the actual waiting time of the nth customer and Wn,i, i = 1, 2, . . . , s, the
service backlog or workload of the ith server just before the arrival of the nth customer,
i.e., if the nth and subsequent customers would not enter the system then the ith server
would become idle at time Tn + Wn,i. Since the queue discipline is first come, first served,
we may assume that in front of each server there is a separate queue and that an arriving
customer joins the queue of the server with the smallest workload. In the case when there
are several servers with smallest workload, the arriving customer will select one of them at
random. We also assume that this discipline holds for the special customers. Hence,

Wn = min
1≤i≤s

Wn,i, n = 1, 2, . . . .

55
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The study of this type of queue for C0 = 0 has been done by de Smit [21, 22, 23]. In
[21], using the Wiener-Hopf factorization method, the author studied some distributions of
interest, such as the actual waiting time Wn, the queue length at server i at time Tn−, the
number of customers in the system at time Tn−, and the number of customers in the system
during the kth busy period. All the distributions are given in terms of Laplace-Stieltjes
transforms.

In [23], the investigation in [21] is extended to the study of the system in continuous
time. The results are expressions for the distributions of the virtual waiting time and the
length of the busy period.

A numerical solution for the system GI/H2/s has been studied in [22]. The study is
based on the Laplace-Stieltjes transforms of the distributions of interest derived in [21] and
[23]. A numerical inversion algorithm is given, and some examples in this paper show that
the algorithm has been successfully implemented to obtain good results.

In this chapter we try to extend the analysis in the papers mentioned above by assuming
a non-zero initial number of customers. We are interested in those distributions, which
for C0 = 0 have been studied in [21] and [23], such as the distribution of actual waiting
times, the distribution of virtual waiting times, the queue length distribution, and the
distribution of the total number of customers. We consider the Markov process

{(Wn, Tn,Xn), n = 1, 2, . . .},

where Xn is the phase vector at Tn−, which will be defined in the next section. We
refer to the derivation in [23] to obtain the system of Wiener-Hopf equations of the joint
distribution of Wn, Tn and Xn. The system of equations we derive here is a generalization
of what has been obtained in [21]. We solve this system of equations by first factorizing its
symbol, and then decomposing a certain vector. We then obtain an explicit expression for
the transform of the joint distribution of {(Wn, Tn,Xn), n = 1, 2, · · · }, which directly gives
us the generating function of the waiting time of nth customer. The limiting distribution
of the waiting time can be obtain by applying Abel’s limit theorem, and the distribution
of the waiting time of nth customer can be obtained by inverting the generating function
numerically.

The transforms of the virtual waiting time, the queue length , and the total number
of customers can be derived from the transform of of joint distribution of {(Wn, Tn,Xn),
n = 1, 2, · · · }. We show in sections 4.7, 4.8, 4.9 and 4.10, how the expressions for the
transforms depend on the initial number of customers. The steady-state distributions of
the distributions can be derived by applying Abel’s limit theorem, and the time-dependent
distributions can be obtained by inverting the transforms numerically. We apply the nu-
merical inversion algorithm proposed in [3], and the results of the inversion can be found
in section 4.11.

This chapter is organized as follow. In section 4.2 we recall some definitions and nota-
tions from [21]. In section 4.3 we derive the system of Wiener-Hopf equations, and then
work out the factorization and the decomposition. The explicit expression for the Laplace-
Stieltjes transform of the distribution of the actual waiting time can be found in section
4.5, and for the virtual waiting times can be found in section 4.6. The study of the dis-
tribution of the queue length at arrival epochs is done in section 4.7 and the distribution
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of total number of customers at arrival epochs is given in section 4.8. For the system in
continuous time, the distributions of the queue length and the total number of customers
are studied in section 4.9 and 4.10, respectively. Finally in section 4.11 some numerical
examples for those distributions are given.

4.2 Notations and definitions

We denote the Laplace-Stieltjes transform of F by A(φ), i.e.,

A(φ) =

∫ ∞

0

e−φxdF (x), Re(φ) ≥ 0.

The mean of service time is denoted by β, thus

β =
m∑

i=1

pi

bi

.

The relative traffic intensity ρ is defined by

ρ =
β

αs
.

Suppose that x = (x1, . . . , xm) and y = (y1, . . . , ym) are two arbitrary m− dimensional
vectors. The inner product of vectors x and y is denoted by xy = x1y1 + . . . + xmym. We
write x ≤ y if x1 ≤ y1, · · · , xm ≤ ym. The vector (x1, . . . , xi ± 1, xi+1, . . . , xm) is denoted
by x ± 1i and vector (x1 ± y1, . . . , xm ± ym) by x ± y.

Let Rk
m be the class of m-dimensional vectors which have nonnegative integer compo-

nents and for which x1 = x1 + · · ·+xm = k. Rk
m contains

(
m + k − 1

k

)
elements, see page

36 of Feller[26]. For brevity, we shall write c(k) instead of

(
m + k − 1

k

)
.

δij is the Kronecker delta, i.e. δij = 0, i 6= j, δjj = 1. 1(A) is the indicator function of
the event A. For real a we denote a+ = max(0, a) and a− = min(0, a).

If M is an m×n−dimensional matrix, we denote by Mx the xth column of M, and by
Mx the xth row of M.

We define
Un,i = Wn,i − Wn, i = 1, . . . , s.

Note that an arriving customer joins the queue with smallest workload, we see that Un,i,
if non-zero, is the remaining service time at Tn + Wn of the last customer who joined
the queue of server i before Tn. If this customer is of type j, this remaining service time
is exponentially distributed with parameter bj. We then say that at time Tn− server i
is in phase j. Let Xn,i be the number of servers that at Tn− are in phase i; the vector
Xn = (Xn,1, . . . , Xn,m) is called the phase vector of the system at time Tn− and we see
that Xn ∈ ⋃s−1

k=0 Rk
m. Given Xn, those Un,i that are strictly positive and Wn are mutually

independent, and {(Wn, Tn,Xn), n = 1, 2, . . .} is a vector Markov process.
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Let X∗
n be the phase vector at time Tn, i.e. X∗

n = Xn +1i if the nth customer is of type
i. Observe that X∗

n ∈ ⋃s
k=1 Rk

m. Let us define

Vn = min(2)(Un,1, . . . , Un,s, Bn),

where min(2)(x1, . . . , xk) is the smallest but one element of (x1, . . . , xk). Let Yn be the
phase vector corresponding to (Un,1, . . . , Un,s, Bn) that are not equal to 0 or Vn. If X∗

n = x
with x1 < s then Vn = Wn = 0 and Yn = x; if X∗

n = x with x1 = s it follows from Lemma
1 of Appendix 1 in de Smit [21] that Yn = x − 1j with probability xjbj/xb.

For readability, in this chapter we write all vectors and matrices in bold or with bar
accent.

4.3 Wiener-Hopf factorization

In this section we will derive the system of Wiener-Hopf equations governing the
Laplace-Stieltjes transform of the joint distribution of Wn, Tn, and Xn. To obtain a so-
lution for this system we use Wiener-Hopf factorization and a decomposition.

We recall that the first customer upon his arrival finds C0 other customers in the system.
There are two possible cases for C0 to be considered.

1. C0 < s.
This means that at T1 at least one server is idle so that W1 = 0, and we assume
X1 = (x̄1, . . . , x̄m). It is clear that for this case X1 ∈

⋃s−1
k=0 Rk

m.

2. C0 ≥ s.
This means that at T1 all servers are busy so that W1 > 0. Since by assumption
the service times of the special customers are i.i.d and have a common exponential
distribution with rate w, the distribution of W1 will be the convolution of exponential
distributions with rate w. To illustrate this, let us consider the example described by
figure 4.1.

In this example, we denote by B̃i the service time of the ith special customer. We
see that

E(exp(−φW1)) =

(
w

φ + w

)2

,

and
X1,j̄ = 4,

noting that w = bj̄.

In general, our assumption on the service times of the special customers leads to the
following condition.

Condition 4.3.1
For Re(φ) ≥ 0,

E(exp(−φW1)) =

(
w

φ + w

)a

,
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B̃1

B̃12

B̃2

B̃7

�
�

���

first customer goes to server 2

B̃3

B̃6

B̃8

B̃11

B̃4

B̃9

B̃5

B̃10

server 1 2 3 4 5

T1

T1 + W1

Figure 4.1: A system with s = 5 and C0 = 12

where a =

{
0 , for C0 < s,

a positive integer , otherwise.

Observe that for C0 ≥ s, the busy servers at time T1 +W1 are serving special customers
only. This means that

X1,i =

{
0 , i 6= j̄,

# busy servers at time T1 + W1 , i = j̄,

and, as a consequence, we can assume X1 = (0, . . . , 0, x̄j̄, 0, · · · , 0) = x̄ ∈ ⋃s−1
k=0 Rk

m.

Remark. The results we obtain in this chapter will depend on C0 through its value γ.

We define for γ = 0, 1, . . . , |r| < 1, Re(η) ≥ 0 or γ = 0, 1, . . . , |r| ≤ 1, Re(η) > 0,

Z(r, η, γ;x) =
∞∑

n=1

rnE(exp(−ηTn)1(Xn = x)|C0 = γ), x ∈
s−2⋃

k=0

Rk
m,

Z∗(r, η, γ;x) =
m∑

i=1

piZ(r, η, γ;x − 1i), x ∈ Rs−1
m , (4.1)

Zn(η, φ, γ;x) = E(exp(−φWn − ηTn)1(Xn = x)|C0 = γ), n = 1, 2, · · · ,x ∈ Rs−1
m ,

Z(r, η, φ, γ;x) =
∞∑

n=1

rnZn(η, φ, γ;x), x ∈ Rs−1
m ,

and

D(r, η, φ, γ;x) =
∞∑

n=1

rn+1E(exp(φ[Wn + Vn − An+1]
− − ηTn)1(Yn = x)|C0 = γ),
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x ∈ Rs−1
m , Re(φ) ≥ 0.

With the assumptions on X1 and W1 we obtain the system of Wiener-Hopf equations
given in the following theorem. This is a generalization of Theorem 2.1 in de Smit[21].

Let (
x

y; z

)
=

m∏

i=1

xi!

yi!zi!(xi − yi − zi)!

and let b = (b1, b2, · · · , bm).

Theorem 4.3.1
For x = (x1, . . . , xm) ∈ Rk

m, k = 0, 1, . . . , s − 2;

Z(r, η, γ;x)

= r
m∏

i=1

δx̄i,xi
+ rA(η + xb)

m∑

i=1

piZ(r, η, γ;x − 1i)

+
s−2∑

l=k+1

∑

y∈Rl
m

∑

ννν≤y−x

(
y

x;ννν

)
(−1)ννν1rA(η + xb + νb)

m∑

i=1

piZ(r, η, γ;y − 1i)

+
∑

y∈Rs−1
m

∑

ννν≤y−x

(
y

x;ννν

)
(−1)ννν1D(r, η,xb + νb, γ;y),

(4.2)

and for x ∈ Rs−1
m , Re(φ) = 0,

Z(r, η, φ, γ;x)

[
1 − r

m∑

j=1

pj
(xj + 1)bj

φ + xb + bj

A(η − φ)

]

= rA(η − φ)
m∑

i=1

piZ(r, η, γ;x − 1i)

+ rA(η − φ)
m∑

j=1

m∑

i=1,i6=j

piZ(r, η, φ, γ;x + 1j − 1i)
(xj + 1)bj

φ + xb + bj

+ rZ1(φ, γ;x) + Z(r, η, 0, γ;x) − D(r, η,−φ, γ;x),

(4.3)

while for x ∈ Rs−1
m ,

Z(r, η, 0, γ;x) = D(r, η,xb, γ;x), (4.4)

and the vector Z̄1(φ, γ), by letting X1 = (x̄1, . . . , x̄m), has elements

Z1(φ, γ;x) =





0 , if γ < s − 1,∏m
i=1 δx̄i,xi

, if γ = s − 1,
∏m

i=1 δx̄i,xi

(
w

φ+w

)a

, if γ ≥ s,

where a is a positive integer less than s, as described in Condition 4.3.1.
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Proof. We can follow the proof of Theorem 2.1 in de Smit [21] to obtain the equations
(4.2), (4.3) and (4.4). It remains to determine the expression for Z1(φ, γ;x), x ∈ Rs−1

m .
For x ∈ Rs−1

m ,

Z1(φ, γ;x) = E(exp(−φW1)1(X1 = x)|C0 = γ).

For γ = 0, X1 ∈ ⋃s−2
k=0 Rk

m so that 1(X1 = x) = 0. It follows that Z1(φ, γ;x) = 0, so that
for γ = 0 the equation (4.3) is precisely the same as the equation (2.2) in de Smit[23]. For
γ = s − 1, W1 = 0 so that Z1(φ, γ;x) = 1 if and only if x = X1. For γ ≥ s, we use the

condition 4.3.1 so that Z1(φ, γ;x) =
∏m

i=1 δx̄i,xi

(
w

φ+w

)a

.

�

Define the c(s − 1) × c(s − 1)-dimensional matrix H(r, η, φ) with elements
Hx,y(r, η, φ),x,y ∈ Rs−1

m , as

Hx,x(r, η, φ) = 1 − rA(η − φ)
m∑

j=1

pj
(xj + 1)bj

φ + xb + bj

Hx,x+1j−1i
(r, η, φ) = −rA(η − φ)pi

(xj + 1)bj

φ + xb + bj

, i 6= j, xi > 0,

Hx,y(r, η, φ) = 0, otherwise.

(4.5)

Let Z̄(r, η, φ, γ), D̄(r, η, φ, γ),Z∗(r, η, γ) and Z̄1(φ, γ) be the c(s − 1)−dimensional column
vectors with elements Z(r, η, φ, γ;x),D(r, η, φ, γ;x), Z∗(r, η, γ;x) and Z1(φ, γ;x) respec-
tively. Equation (4.3) can then be written in the matrix form:

H(r, η, φ)Z̄(r, η, φ, γ)

=rA(η − φ)Z∗(r, η, γ) + rZ̄1(φ, γ) + Z̄(r, η, 0, γ) − D̄(r, η,−φ, γ).
(4.6)

The system (4.6) can be solved by factorizing its symbol H(r, η, φ) and then decomposing
the vector rH−1(r, η, φ)Z̄1(φ, γ). The factorization is similar to the one in [21]. The result
is given in Theorem 4.3.3, and after that we discuss the decomposition. First, we recall a
theorem from [21] that is needed for the factorization.

Theorem 4.3.2
Let N(r, η) be the total order of the zeros of detH(r, η, φ) in the left half-plane

Re(φ) < 0. If 0 < |r| < 1 and Re(η) ≥ 0, or 0 < |r| ≤ 1 and Re(η) > 0, or r = 1, η = 0
and ρ < 1 and if some conditions on H(r, η, φ) are satisfied, then N(r, η) = c(s). For
|r| < 1 detH(r, η, φ) 6= 0 on Re(φ) = 0; for ρ < 1 detH(1, η, φ) has a simple zero at φ = 0
and has no zero elsewhere on the imaginary axis.

Proof. See [21]. �

We denote the zeros of detH(r, η, φ) in the left half-plane Re(φ) < 0 by µx(r, η),
x ∈ Rs

m. These zeros are continuous functions of r in [0, 1]. We impose the following
condition.
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Condition 4.3.2
For (|r| < 1, Re(η) ≥ 0) or (|r| ≤ 1, Re(η) > 0), all zeros µx(r, η) are of order 1.

This condition and the conditions mentioned in the Theorem 4.3.2 are almost always
satisfied (see [21] for more explanation).

For y ∈ Rs
m let By be a non-zero c(s − 1)−dimensional column vector satisfying

H(r, η, µy(r, η))By = 0, (4.7)

and let B be the c(s − 1) × c(s)−dimensional matrix whose column vectors are the By.
Moreover we introduce the following matrices:

the c(s) × c(s)−dimensional matrix L with elements

Lx,y =
∑

{i|xi>0}

piBx−1i,y
1

µy(r, η) + xb
, x ∈ Rs

m,y ∈ Rs
m;

the c(s) × c(s − 1)−dimensional matrix M with elements

Mx,y =
m∑

i=1

piδx,y+1i
, x ∈ Rs

m,y ∈ Rs−1
m ;

the c(s) × c(s)−dimensional matrix J(η, φ) with elements

Jx,x(η, φ) =
1

φ − µx(r, η)
, x ∈ Rs

m,

Jx,y(η, φ) = 0, x ∈ Rs
m,y ∈ Rs

m,x 6= y;

and the c(s − 1) × c(s − 1)−identity matrix I.

We shall assume that the following condition holds.

Condition 4.3.3
detL 6= 0.

If Condition 4.3.3 holds the c(s)× c(s−1)−dimensional matrix C is determined by the
set of linear equations

LC = M. (4.8)

Note that the matrices B,L, and C depend on r and η. For notational convenience, we
suppress this dependence. We define the c(s−1)× c(s−1) dimensional matrices K(r, η, φ)
and H−(r, η, φ) by

K(r, η, φ) = I + BJ(η, φ)C, (4.9)

and

H−(r, η, φ) = H(r, η, φ)K(r, η, φ) = H(r, η, φ) + H(r, η, φ)BJ(η, φ)C. (4.10)

The following theorem gives the factors of matrix H(r, η, φ), which exist if a number
of conditions hold. de Smit [21] argues that these conditions are almost always satisfied
and their exclusion does not cause any serious practical restriction, because they can be
approximated arbitrarily closely by cases for which the conditions are satisfied.
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Theorem 4.3.3
If conditions 4.3.2 and 4.3.3 and other conditions on detH(r, φ) hold then

1.

detK(r, η, φ) =
∏

x∈Rs
m

(
φ + xb

φ − µx(r, η)

)
,

detH−(r, η, φ) is bounded away from 0 for Re(φ) ≤ 0;

2. For Re(φ) = 0,

H(r, η, φ) = H−(r, η, φ)H+(r, η, φ)

where H+(r, φ, η) = K(r, η, φ)−1 satisfies property A+ and is non-singular in
Re(φ) > 0, and H−(r, φ, η) satisfies property A− and is non-singular in Re(φ) < 0.

Proof. See [21]. �

With the factorization above we can write (4.6), for Re(φ) = 0, as

H+(r, η, φ)Z̄(r, η, φ, γ) =H−(r, η, φ)−1[rA(η − φ)Z∗(r, η, γ) + Z̄(r, η, 0, γ)]

+ H−(r, η, φ)−1[−D̄(r, η,−φ, γ) + rZ̄1(φ, γ)].
(4.11)

From Theorem 4.3.3 we see that H−(r, η, φ)−1 satisfies A+. Moreover, from the expression
for Z̄1(φ, γ) in Theorem 4.3.1 we see that for γ < s, the vector Z̄1(φ, γ) has the same prop-
erty as H−(r, η, φ)−1. It follows that the vector rH−(r, η, φ)−1Z̄1(φ, γ) in (4.11) satisfies
A+. For γ ≥ s, Z̄1(φ, γ) does not satisfy A−, so that we have to decompose the vec-
tor rH−(r, η, φ)−1Z̄1(φ, γ), i.e. we need to determine c(s − 1)-dimensional column vectors
Z̄+

1 (r, η, φ, γ) and Z̄−
1 (r, η, φ, γ) with elements Z+

1 (r, η, φ, γ;x) and Z−
1 (r, η, φ, γ;x),x ∈

Rs−1
m , respectively, such that

rH−(r, η, φ)−1Z̄1(φ, γ) = Z̄+
1 (r, η, φ, γ) + Z̄−

1 (r, η, φ, γ), (4.12)

where Z̄+
1 (r, η, φ, γ) satisfies A+ and Z̄−

1 (r, η, φ, γ) satisfies A−.
Although the decomposition is needed only for the case (γ ≥ s and X1 ∈ Rs−1

m ), in the
following we give the expressions for Z̄+

1 (r, η, φ, γ) and Z̄−
1 (r, η, φ, γ) for all cases, in order

to formulate the general solution for (4.6).
Notice that for γ ≥ s − 1, the elements Z1(φ, γ; x) of Z̄1(φ, γ) are equal to zero except

for x = x̄, where x̄ is the phase vector at time T1. It follows that the ’xth’ element of
rH−(r, η, φ)−1Z̄1(φ, γ) for γ ≥ s − 1 is given by

rH−
x,x̄(r, η, φ)−1Z1(φ, γ; x̄).

Let

h(j)(r, η) =
1

j!

dj

dφj
H−

x,x̄(r, η, φ)−1
∣∣∣
φ=−w

and h(0)(r, η) = H−
x,x̄(r, η,−w)−1.

For γ < s − 1, the vector rH−(r, η, φ)−1Z̄1(φ, γ) is the vector zero.
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Lemma 4.3.1
For γ ≥ s and x ∈ Rs−1

m , the elements of the column vectors Z̄+
1 (r, η, φ, γ) and

Z̄−
1 (r, η, φ, γ) are given by

Z−
1 (r, η, φ, γ;x) =

rwa

(φ + w)a

[
H−

x,x̄(r, η, φ)−1 −
a−1∑

j=0

h(j)(r, η)(φ + w)j

]
,

Z+
1 (r, η, φ, γ;x) = rwa

a−1∑

j=0

h(j)(r, η)

(φ + w)a−j
,

for γ = s − 1 and x ∈ Rs−1
m ,

Z−
1 (r, η, φ, γ;x) = rH−

x,x̄(r, η, φ)−1,

Z+
1 (r, η, φ, γ;x) = 0,

and for γ < s − 1 and x ∈ Rs−1
m ,

Z−
1 (r, η, φ, γ;x) = 0,

Z+
1 (r, η, φ, γ;x) = 0,

With the factorization given by Theorem 4.3.3 and the decomposition in Lemma 4.3.1
we obtain the solution of the system (4.3) that is given in the following theorem.

Theorem 4.3.4
If all conditions mentioned before hold, then for 0 < |r| < 1, Re(φ) ≥ 0,

Z̄(r, η, φ, γ)

=K(r, η, φ)K(r, η, 0)−1Z̄(r, η, 0, γ) + K(r, η, φ)[Z̄+
1 (r, η, φ, γ) − Z̄+

1 (r, η, 0, γ)].
(4.13)

Proof. From (4.11), (4.12) and (4.3.1) we have for Re(φ) = 0,

H+(r, η, φ)Z̄(r, η, φ, γ) − Z̄+
1 (r, η, φ, γ)

=H−(r, η, φ)−1[rA(η − φ)Z∗(r, η, γ) + Z̄(r, η, 0, γ) − D̄(r, η,−φ, γ)]

+ Z̄−
1 (r, η, φ, γ).

(4.14)

The left-hand side of (4.14) satisfies A+; the right-hand side of (4.14) satisfies A−. By
analytic continuation we can define an entire function that is equal to the left-hand side
for Re(φ) ≥ 0 and equal to the right-hand side for Re(φ) ≤ 0. But this entire function is
bounded and hence a constant by Liouville’s theorem. So for Re(φ) ≤ 0,

H−(r, η, φ)−1[rA(η − φ)Z∗(r, η, γ) + Z̄(r, η, 0, γ) − D̄(r, η,−φ, γ)]

+ Z̄−
1 (r, η, φ, γ) = H+(r, η, 0)Z̄(r, η, 0, γ) − Z̄+

1 (r, η, 0, γ).
(4.15)

Moreover, for Re(φ) ≥ 0,

H+(r, η, φ)Z̄(r, η, φ, γ) − Z̄+
1 (r, η, φ, γ) = H+(r, η, 0)Z̄(r, η, 0, γ) − Z̄+

1 (r, η, 0, γ), (4.16)
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which yields

Z̄(r, η, φ, γ) =H+(r, η, φ)−1H+(r, η, 0)Z̄(r, η, 0, γ)

+ H+(r, η, φ)−1
[
Z̄+

1 (r, η, φ, γ) − Z̄+
1 (r, η, 0, γ)

]

and using part 2 of the Theorem 4.3.3 we get (4.13). This completes the proof.
�

Equation (4.13) gives us an expression for Z̄(r, η, φ, γ) that depends on Z̄(r, η, 0, γ). To
find an expression for Z̄(r, η, 0, γ), we let

S(r, η, φ) = H−(r, η, φ)H+(r, η, 0), Re(φ) ≤ 0.

From (4.15) we have for Re(φ) ≤ 0,

D̄(r, η,−φ, γ) =rA(η − φ)Z∗(r, η, γ) + Z̄(r, η, 0, γ) − S(r, η, φ)Z̄(r, η, 0, γ)

+ H−(r, η, φ)
[
Z̄−

1 (r, η, φ, γ) + Z̄+
1 (r, η, 0, γ)

]
,

(4.17)

so that for x ∈ Rk
m, k = 0, 1, · · · , s − 1;y ∈ Rs−1

m ,

D(r, η,xb, γ;y)

=rA(η + xb)Z∗(r, η, γ;y) + Z(r, η, 0, γ;y)

−
∑

w∈Rs−1
m

Sy,w(r, η,−xb)Z(r, η, 0, γ;w)

+
∑

w∈Rs−1
m

H−
y,w(r, η,−xb)

[
Z−

1 (r, η,−xb, γ;w) + Z+
1 (r, η, 0, γ;w)

]
.

(4.18)

Choosing x = y and using (4.4) we have for y ∈ Rs−1
m ,

∑

w∈Rs−1
m

Sy,w(r, η,−yb)Z(r, η, 0, γ;w)

=rA(η + yb)Z∗(r, η, γ;y) + Z2(r, η,−yb, γ;y),

(4.19)

where

Z2(r, η, φ, γ;y)

=
∑

w∈Rs−1
m

H−
y,w(r, η, φ)

[
Z−

1 (r, η, φ, γ;w) + Z+
1 (r, η, 0, γ;w)

]
,y ∈ Rs−1

m . (4.20)

Define the c(s − 1) × c(s − 1)−dimensional matrix Q(r, η) by

Qx,y(r, η) = H−
x,y(r, η,−xb), x ∈ Rs−1

m ,y ∈ Rs−1
m .

Condition 4.3.4
For (|r| < 1, Re(η) ≥ 0) or (|r| ≤ 1, Re(η) > 0), detQ(r, η) 6= 0.
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We assume that Condition 4.3.4 is satisfied. Let

R(r, η) = Q(r, η)H+(r, η, 0).

Then, for x ∈ Rs−1
m ,

Z(r, η, 0, γ;x)

=
∑

y∈Rs−1
m

(R(r, η))−1
x,y [rA(η + yb)Z∗(r, η, γ;y) + Z2(r, η,−yb, γ;y)] . (4.21)

If we substitute (4.21) into (4.13) we get an explicit expression for Z(r, η, φ, γ;x), x ∈ Rs−1
m .

In the following, we will derive an explicit expression for Z(r, η, γ;x), x ∈ ⋃s−2
k=0 Rk

m by first
determining expression for D(r, η,−φ, γ;x), x ∈ Rs−1

m .
Define

G(r, η, φ) = (I − S(r, η, φ))R(r, η)−1,

then from (4.18) we have for Re(φ) ≤ 0,x ∈ Rs−1
m ,

D(r, η,−φ, γ;x)

=rA(η − φ)Z∗(r, η, γ;x) + Z2(r, η, φ, γ;x)

+
∑

y∈Rs−1
m

Gx,y(r, η, φ) [rA(η + yb))Z∗(r, η − yb, γ;y) + Z2(r, η, φ, γ;y)] .
(4.22)

Substitution into (4.2) yields for x ∈ Rk
m, k = 0, 1, · · · , s − 2;

Z(r, η, γ;x) =
s−3∑

l=(k−1)+

∑

y∈Rl
m

Z(r, η, γ;y)r
m∑

i=1

pic1(η;x,y + 1i)

+
∑

y∈Rs−2
m

Z(r, η, γ;y)r
m∑

i=1

pi[c1(η;x,y + 1i) + c2(r, η;x,y + 1i)]

+ c3(r, η, γ;x),

(4.23)

where

c1(η;x,y) =
∑

ν≤y−x

(
y

x; ν

)
(−1)ν1A(η + xb + νb)

c2(r, η;x,y) =
∑

z∈Rs−1
m

∑

ν≤z−x

(
z

x; ν

)
(−1)ν1Gz,y(r, η,−xb − νb)A(η + yb),

and

1. For γ ≥ s and X1 ∈ Rs−1
m ,

c3(r, η, γ;x) =
∑

z∈Rs−1
m

c2(r, η,x, z)Z2(r, η,−zb, γ; z)/A(η + zb)

+
∑

y∈Rs−1
m

∑

ν≤y−x

(
y

x; ν

)
(−1)ν1Z2(r, η,−xb − νb;y),
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2. For γ < s − 1 or (γ ≥ s and X1 /∈ Rs−1
m ), Z̄−

1 (r, η, φ, γ) and Z̄+
1 (r, η, φ, γ) turn out

be zero and this implies Z2(r, η, φ, γ;y) = 0,∀y ∈ Rs−1
m , so that

c3(r, η, γ;x) = r

m∏

i=1

δx̄i,xi
,

3. For γ = s − 1, Lemma 4.3.1 implies that Z2(r, η, φ, γ;y) = r
∏m

i=1 δx̄i,yi
. Notice that

in this case X1 ∈ Rs−1
m , so that r

∏m
i=1 δx̄i,xi

= 0. We then have

c3(r, η, γ;x) =r
∑

y∈Rs−1
m

∑

ν≤y−x

(
y

x; ν

)
(−1)ν1Gy,x̄(r, η,−xb − νb)

+ r
∑

ν≤x̄−x

(
x̄

x; ν

)
(−1)ν1.

Let the

(
m + s − 2

s − 2

)
×
(

m + s − 2
s − 2

)
-dimensional matrix T(r, η) with elements

Tx,y(r, η), x ∈
s−2⋃

k=0

Rk
m, y ∈

s−2⋃

k=0

Rk
m,

are defined by

Tx,y(r, η) =





r
∑m

i=1 pic1(η;x,y + 1i) , for x ∈ Rk
m,

y ∈ Rl
m, with

(1 ≤ k ≤ s − 2;

k − 1 ≤ l ≤ s − 3)

or

k = 0; 0 ≤ l ≤ s − 3,

r
m∑

i=1

pi[c1(η;x,y + 1i) + c2(r, η;x,y + 1i)] , for x ∈ Rk
m,

k = 0, . . . , s − 2;

y ∈ Rs−2
m ,

0 , otherwise.

Let I be the

(
m + s − 2

s − 2

)
×
(

m + s − 2
s − 2

)
identity matrix, Z(r, η, γ) be the

(
m + s − 2

s − 2

)
-

dimensional column vector with elements Z(r, η, γ;x), x ∈ ⋃s−2
k=0 Rk

m, and c3(r, η, γ) be

the

(
m + s − 2

s − 2

)
-dimensional column vector with elements c3(r, η;x), x ∈ ⋃s−2

k=0 Rk
m. With

these definitions (4.23) becomes

(I − T(r, η))Z(r, η, γ) = c3(r, η, γ), (4.24)
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which is a generalization of the system (3.19) in de Smit [21].

We have studied the system of equations of the time-dependent transforms Z(r, η, γ;x),
x ∈ ⋃s−2

k=0 Rk
m and Z(r, η, 0, γ;x),x ∈ Rs−1

m , which we derive in (4.24) and (4.21). In the
rest of this chapter all time-dependent probability distributions of interest are derived in
terms of these transforms. We need to impose the following condition in order to have an
unique solution of the systems (4.24) and (4.21).

Condition 4.3.5
For (|r| < 1, Re(η) ≥ 0) or (|r| ≤ 1, Re(η) > 0), det(I − T(r, η)) 6= 0.

We end this section with stating a theorem that will be used later in section 4.6. The
theorem is a generalization to Theorem 1 in de Smit [23].

Theorem 4.3.5
For γ ≥ s,X1 ∈ Rs−1

m , we have for Re(φ) ≥ 0 and Re(η) > 0

∞∑

n=1

E(exp(−φ(Wn + Vn) − ηTn)1(Yn = y)|C0 = γ)

=
m∑

n=1

piZ(1, η, γ;y − 1i) +
∑

x∈Rs
m

(
V1(1, η, γ;x)

(φ − µx(1, η))
−

a∑

i=1

ai(x)V2(1, η;x)

(φ + w)a−i+1

)

.

(
m∑

j=1

(yj + 1)bjLy+1j ,x

)
, y ∈ Rs−1

m ,

(4.25)

and

∞∑

i=1

E(exp(−φ(Wn + Vn) − ηTn)|C0 = γ)

=
s−2∑

k=1

∑

y∈Rk
m

m∑

i=1

piZ(1, η, γ;y − 1i)

+
∑

x∈Rs
m

(
V1(1, η, γ;x)

(φ − µx(1, η))
−

a∑

i=1

ai(η,x)V2(1, η;x)

(φ + w)a−i+1

)

.


 1

A(η − µx(1, η))

∑

y∈Rs−1
m

By,x


 ,

(4.26)

where

ai(η, x) =
1

(i − 1)!
lim

φ→−w

∂i−1

∂φi−1

1

(φ − µx(1, η))

=
(−1)i−1

(i − 1)!
(−w − µx(1, η))−i,

(4.27)
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and V1(r, η;x) and V2(r, η;x), x ∈ Rs
m, respectively, are defined as

V1(r, η, γ;x) = [CK(r, η, 0)−1Z(r, η, 0, γ)]x − [CZ̄+
1 (r, η, 0, γ)]x (4.28)

+
V2(1, η;x)

(µx(1, η) + w)a
,

V2(r, η;x) = rwa
∑

v∈Rs−1
m

Cx,v

[
H−(r, 0,−w)−1

]
v,x̄

, (4.29)

otherwise, we have for y ∈ Rs−1
m , Re(φ) ≥ 0 and Re(η) > 0,

∞∑

n=1

E(exp(−φ(Wn + Vn) − ηTn)1(Yn = y)|C0 = γ)

=
m∑

n=1

piZ(1, η, γ;y − 1i) +
∑

x∈Rs
m

V (1, η, γ;x)

(φ − µx(1, η))

(
m∑

j=1

(yj + 1)bjLy+1j ,x

)
,

(4.30)

and

∞∑

i=1

E(exp(−φ(Wn + Vn) − ηTn)|C0 = γ)

=
s−1∑

k=1

∑

y∈Rk
m

m∑

i=1

piZ(1, η, γ;y − 1i)

+
∑

x∈Rs
m

V (1, η, γ;x)

(φ − µx(1, η))


 1

A(η − µx(1, η))

∑

y∈Rs−1
m

By,x


 ,

(4.31)

where Bx,y is defined in (4.7).

Proof. The proof of (4.25) and (4.26) is similar to the proof of Theorem 1 in [23] and
will be omitted. We use Theorem 16.20 in Apostol [5] for the derivation of ai(η,x).

For γ < s or (γ ≥ s and X1 /∈ Rs−1
m ), by our choice of Z+

1 (r, η, φ) and Z−
1 (r, η, φ) we

have
V1(1, η, γ;x)

(φ − µx(1, η))
−

a∑

i=1

ai(x)V2(1, η;x)

(φ + w)a−i+1
=

V (1, η, γ;x)

(φ − µx(1, η))
,

where the column vector V (r, η, γ) with components V (r, η, γ,x),x ∈ Rs
m is defined as

V(r, η, γ) = CK(r, η, 0)−1Z̄(r, η, 0, γ). (4.32)

In this case, equation (4.25) becomes equation (4.30), and equation (4.26) becomes equation
(4.31).

�

The equations (4.30) and (4.31) are precisely the same as equations (2.4) and (2.5) in
Theorem 1 in [23], where the GI/Hm/s system with γ = 0 is studied.
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4.4 Steady state results

Before we study some distributions of interest, in this section we study the phase vectors
and some related transforms in steady state.

For ρ < 1 we define for x ∈ Rk
m, k = 0, 1, · · · , s − 2;

X(x) = lim
n→∞

P (Xn = x)

and for x ∈ Rs−1
m ,

X ∗(x) = lim
n→∞

m∑

i=1

piP (Xn = x − 1i)

X (φ;x) = lim
n→∞

E(exp(−φWn)1(Xn = x))

∆(φ;x) = lim
n→∞

E(exp(φ[Wn + Vn − An+1]
−)1(Yn = x)).

Let X̄ ∗, X̄ (φ) and ∆̄(φ) be the c(s − 1)-dimensional column vectors with elements X ∗(x),
X (φ;x), and ∆(φ;x) respectively, and write H(φ) = H(1, 0, φ),K(φ) = K(1, 0, φ). From
(4.2) and

s−2∑

k=0

∑

x∈Rk
m

Z(r, η, γ;x) +
∑

x∈Rs−1
m

Z(r, η, 0, γ;x) =
r

1 − rA(η)
, (4.33)

we have for x ∈ Rk
m, k = 0, 1, · · · , s − 2;

X(x) = lim
r↑1

(1 − r)Z(r, 0, 0;x) = lim
η↓0

(1 − A(η))Z(1, η, 0;x),

and for x ∈ Rs−1
m ,

X ∗(x) = lim
r↑1

(1 − r)
m∑

i=1

piZ(r, 0, 0;x − 1i) = lim
η↓0

(1 − A(η))Z(1, η, 0;x − 1i),

X (φ;x) = lim
r↑1

(1 − r)Z(r, 0, φ, 0;x) = lim
η↓0

(1 − A(η))Z(1, η, φ, 0;x),

and
∆(φ;x) = lim

r↑1
(1 − r)D(r, 0, φ, 0;x) = lim

η↓0
(1 − A(η))D(1, η, φ, 0;x),

so that (4.6) implies

H(φ)X̄ (φ) = A(−φ)X ∗ + X̄ (0) − ∆̄(−φ).

From (4.13) we obtain the solution of (4.3) in steady state.

Theorem 4.4.1
If ρ < 1 and appropriate generalizations of Conditions 3.3 - 3.6 as well as Condition

3.6’ in [21] hold for r = 1 then for Re(φ) ≥ 0,

X̄ (φ) = K(φ)K(0)−1X̄ (0). (4.34)
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Proof. It is clear that

lim
r↑1

(1 − r)K(r, η, φ)[Z+
1 (r, η, φ, 0) −Z+

1 (r, η, 0, 0)] = 0.

Then by applying Abel’s theorem into (4.13) we get (4.34).
�

Let X be the

(
m + s − 2

s − 2

)
-dimensional column vector with elements X(x), x ∈ ⋃s−2

k=0 Rk
m.

Equation (4.24) becomes
(I − T(1, 0))X = 0, (4.35)

and we have the normalizing condition

s−2∑

k=0

∑

x∈Rk
m

X(x) +
∑

x∈Rs−1
m

X (0;x) = 1. (4.36)

If we apply Abel’s theorem to the function in (4.21) then we have for x ∈ Rs−1
m ,

X (0;x) =
∑

y∈Rs−1
m

R(1, 0)−1
x,yA(yb)X ∗(x). (4.37)

So that we can write (4.36) as

s−3∑

k=0

∑

x∈Rk
m

X(x) +
∑

x∈Rs−2
m

X(x)


1 +

∑

y∈Rs−1
m

m∑

i=1

piR(1, 0)−1
y,x+1i

A(xb + bi)


 = 1. (4.38)

We then impose the following condition.

Condition 4.4.1
The matrix I − T(1, 0) has rank

(
m + s − 2

s − 2

)
− 1.

Since equation (4.38) is not a linear combination of the equations in the system (4.35),
then, if the Condition 4.4.1 holds, system (4.35) plus the equation (4.38) has rank

(
m + s − 2

s − 2

)
,

so that X(x),x ∈ ⋃s−2
k=0 Rk

m can be obtained from (4.35) and (4.36). Moreover, X (0;x),
x ∈ Rs−1

m can be obtained from equation (4.37).

4.5 The actual waiting time

In this section we derive the distribution of the actual waiting of the nth customer and
the distribution of the actual waiting time in steady state.
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For |r| < 1, Re(φ) ≥ 0, by conditioning on the phase vector at time 0 we have

∞∑

n=1

rnE(exp(−φWn)|C0 = γ) =
s−2∑

k=0

∑

x∈Rk
m

Z(r, 0, γ;x) +
∑

x∈Rs−1
m

Z(r, 0, φ, γ;x)

=
r

1 − r
+
∑

x∈Rs−1
m

[Z(r, 0, φ, γ;x) −Z(r, 0, 0, γ;x)].

The expression for the function Z(r, 0, φ, γ;x) or Z(r, 0, 0, γ;x) can be obtained from (4.13)
by setting η (and φ) equal to 0. Then by using (4.9), after some simple calculations, we
have for γ ≥ s,X1 ∈ Rs−1

m , |r| < 1, and Re(φ) ≥ 0,

∞∑

n=1

rnE(exp(−φWn)|C0 = γ)

=
r

1 − r
−
(
Z̄+

1 (r, 0, 0, γ)
)t

1 +
∑

x∈Rs
m

ex(r, 0, γ)φ + fx(r)

φ − µx(r, 0)

+ wa

(
Z̄+

1 (r, 0, 0)
)t

1

(φ + w)a
+

a∑

i=1

gi(r)

(φ + w)a−i+1
,

(4.39)

where the c(s)-dimensional column vectors e(r, η, γ) and f(r) with elements ex(r, η) and
fx(r), respectively, are given by

e(r, η, γ) = E(r, η)K(r, η, 0)−1Z̄(r, η, 0, γ) (4.40)

fx(r) =

[
1

(w + µx(r, 0))a
− 1

wa

]
Bt

x1V2(r, 0;x), (4.41)

with the c(s) × c(s − 1)-dimensional matrix E(r, η) is defined as

Ex,y(r, η) =
1

µx(r, η)
Cx,y

∑

z∈Rs−1
m

Bz,x, (4.42)

the l−dimensional column vector g(r) with elements gi(r) is given by

gi(r) =
∑

y∈Rs
m

ai(0,y)Bt
y1V2(r, 0;y),

where the function V2(r, 0;y) is defined in (4.29), and the function ai(η,y) is defined in
(4.27).

For γ < s or (γ ≥ s,X1 /∈ Rs−1
m ), it turns out that fx(r) = 0,x ∈ Rs

m, and gi(r) = 0,
for i = 1, 2, · · · , l, so that the equation (4.39) becomes

∞∑

n=1

rnE(exp(−φWn)|C0 = γ) =
r

1 − r
+
∑

x∈Rs
m

ex(r, 0, γ)φ

φ − µx(r, 0)
, (4.43)

which for γ = 0 is identical to equation (4.1) in [21].
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If ρ < 1 let W be the actual waiting time in steady state. Then by applying Abel’s
theorem to (4.39) or (4.43) we have for Re(φ) ≥ 0,

E(exp(−φW )) = 1 +
∑

x∈Rs
m

ẽx

φ

φ − µ̄x

, (4.44)

where µ̃x = µx(1, 0), and the c(s)-dimensional column vector ẽ with elements ẽx is given
by ẽ = EK(0)−1X̄ (0), with E = E(1, 0), and X̄ (0) is given in section 4.4. This result
coincides with (4.3) in de Smit [21].

4.6 The virtual waiting time

Let Nt be the number of customers arriving during [0, t] and let W ∗
t be the virtual

waiting time. Then

W ∗
t = [WNt + VNt + TNt − t]+ . (4.45)

Since

E(exp(−φ(Wn + Vn + Tn − t))1(Nt = n)|C0 = γ)

=

∫ t

0

exp(φ(t − u))(1 − F (t − u))duE(exp(−φ(Wn + Vn))1(Tn ≤ u)|C0 = γ),

then by using (4.26) we have for γ ≥ s, X1 ∈ Rs−1
m , and Re(η) > Re(φ) ≥ 0,

∫ ∞

0

exp(−ηt)E(exp(−φ(WNt + VNt + TNt − t))|C0 = γ)dt

=
1 − A(η − φ)

η − φ

∞∑

n=1

E(exp(−φ(Wn + Vn) − ηTn)|C0 = γ)

=
1 − A(η − φ)

η − φ

s−1∑

k=1

∑

y∈Rk
m

m∑

i=1

piZ(1, η, γ;y − 1i)

+
1 − A(η − φ)

η − φ

∑

x∈Rs
m

(
V1(1, η, γ;x)

φ − µx(1, η)
−

a∑

i=1

ai(x)V2(1, η;x)

(φ + w)a−i+1

)

.


 1

A(η − µx(1, η))

∑

y∈Rs−1
m

By,x


 .

(4.46)

Using the identity

exp(−φx+) =
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
exp(−ξx), Re(φ) > Re(ξ) > 0,
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which holds for any real x, and Theorem 16.20 in Apostol[5], we find for γ ≥ s, X1 ∈ Rs−1
m ,

and Re(η) > 0, Re(ξ) ≥ 0,
∫ ∞

0

exp(−ηt)E(exp(−φW ∗
t )|C0 = γ)dt =

1

η
+
∑

x∈Rs
m

nx(η, γ)
φ

φ − µx(1, η)

+
a∑

i=1

oi(η)
φ

(φ + w)2(a−i)
,

(4.47)

where

nx(η) =
1 − A(η − µx(1, η))

(η − µx(1, η))A(η − µx(1, η))

V1(1, η;x)

µx(1, η)

∑

y∈Rs−1
m

By,x

oi(η) =

∏a−i
j=1 −2(j − 1)

(a − i)!

∑

x∈Rs
m

ai(x)V2(1, η;x)

A(η − µx(1, η))

∑

y∈Rs−1
m

By,x

.
∂a−i

∂ξa−i

(1 − A(η − ξ))

ξ(η − ξ)

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
ξ=−w

.

Furthermore, for γ < s or (γ ≥ s,X1 /∈ Rs−1
m ), we have

∫ ∞

0

exp(−ηt)E(exp(−φW ∗
t )|C0 = γ)dt =

1

η
+
∑

x∈Rs
m

ñx(η, γ)
φ

φ − µx(1, η)
, (4.48)

where

ñx(η, γ) =
1 − A(η − µx(1, η))

(η − µx(1, η))A(η − µx(1, η))

V (1, η, γ;x)

µx(1, η)

∑

y∈Rs−1
m

By,x

=
1 − A(η − µx(1, η))

(η − µx(1, η))A(η − µx(1, η))
ex(1, η, γ),

and the function ex(r, η, γ) is defined in (4.40).

For ρ < 1, let W ∗ be the virtual waiting time in steady state. Then by applying Abel’s
theorem to (4.47) we obtain for Re(φ) ≥ 0,

E(exp(−φW ∗)) = 1 +
∑

x∈Rs
m

n̂x

φ

φ − µ̃x

, (4.49)

with

n̂x =
(A(−µ̃x) − 1)

αµ̃xA(−µ̃x)

V̂ (x)

µ̃x

∑

y∈Rs−1
m

By,x =
(A(−µ̃x) − 1)

αµ̃xA(−µ̃x)
ẽx,

where the vector Ṽ with components Ṽ(x),x ∈ Rs
m is given by

Ṽ = CK−1(1, 0, 0)X̄ (0).

This result coincides with (3.4) in de Smit [23].
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4.7 The queue length at arrival epochs

Let Qn be the number of waiting customers just before the arrival epoch Tn. To analyze
its probability distribution, we first determine the events related to the events

{Qn ≤ j, n = 1, 2, · · · }.

The events for γ < s are different from those for γ ≥ s. Hence, we split up the study into
two different cases.

4.7.1 The queue length at arrival epochs for γ < s

For γ < s, let č = s−γ. Then up to Tč there is no queue in the system, and the random
variable Qn fulfills the following expressions,

{Qn ≤ j} = Ω, 1 ≤ n ≤ č + j + 1,

{Qč+j+1+n ≤ j} = {Tč+n + Wč+n < Tc̄+j+1+n}, n = 1, 2, · · · ,

where Ω is the sure event. Since

E(qQn) = (1 − q)
∞∑

j=0

qjP (Qn ≤ j), (4.50)

we have for γ < s and |r| < 1, |q| < 1,

∞∑

n=1

rnE(qQn|C0 = γ)

=
∞∑

j=0

č+j+1∑

n=1

qj(1 − q)rn

+
∞∑

j=0

∞∑

n=1

qj(1 − q)rč+j+1+nP (Tč+n + Wč+n < Tč+j+1+n).

(4.51)

Since G(x) is continuous, then by using the identity

1(x < 0) +
1

2
1(x = 0) =

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
exp(−ξx), (4.52)
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we rewrite (4.51) as

∞∑

n=1

rnE(qQn|C0 = γ)

=
1 − q

1 − r

[
r

1 − q
− rč+2

1 − qr

]

+
∞∑

j=0

∞∑

n=1

qj(1 − q)rč+j+1+n 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
Aj+1(−ξ)E(exp(−ξWč+n)|C0 = γ)

=
1 − q

1 − r

[
r

1 − q
− rč+2

1 − qr

]

+
∞∑

j=0

qj(1 − q)rj+1 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
Aj+1(−ξ)

∞∑

n=1

rnE(exp(−ξWn)|C0 = γ)

−
∞∑

j=0

qj(1 − q)rj+1 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ
Aj+1(−ξ)

č∑

n=1

rnE(exp(−ξWn)|C0 = γ).

(4.53)

Since γ < s then Wn = 0, n = 1, 2, · · · , č. As a consequence, the last integral in (4.53)
is equal to

∑č
n=1 rn. The other integral can be analyzed by first interchanging the order

of the first summation and the integration so that the summation can be replaced by a
simpler term, and then expressing the term

∑∞
n=1 rnE(exp(−ξWn)|C0 = γ) in terms of

(4.43). It yields for γ < s and |r| < 1, |q| < 1,

∞∑

n=1

rnE(qQn|C0 = γ) =
1 − q

1 − r

[
r

1 − q
− rč+2

1 − qr

]
+

r2(1 − q)

(1 − r)(1 − qr)

+
∑

x∈Rs
m

(1 − q)rA(−µx(r, 0))ex(r, 0, γ)

1 − qrA(−µx(r, 0))

− r2(1 − rč)(1 − q)

(1 − r)(1 − qr)

=
r

1 − r
+
∑

x∈Rs
m

(1 − q)rA(−µx(r, 0))ex(r, 0, γ)

1 − qrA(−µx(r, 0))
,

(4.54)

where ex(r, 0, γ) is defined in (4.40).

If ρ < 1 let Q be distributed according to the stationary queue-length distribution.
Using Abel’s limit theorem it follows from (4.54) that for |q| ≤ 1,

E(qQ) = 1 +
∑

x∈Rs
m

ẽx

(1 − q)A(−µ̃x)

1 − qA(−µ̃x)
, (4.55)

where ẽx and µ̃x are defined as in (4.44). Equation (4.55) coincides with (4.5) in de
Smit [21].



4.7 The queue length at arrival epochs 77

The generating function of the kth moment of Qn can also be derived from (4.54). For
γ < s, the generating function of the first moment is given in the following equation,

∞∑

n=1

rnE(Qn|C0 = γ) = −
∑

x∈Rs
m

rA(−µx(r, 0))ex(r, 0, γ)

1 − rA(−µx(r, 0))
. (4.56)

If ρ < 1 then it follows from (4.55) in the usual way that

E(Q) = −
∑

x∈Rs
m

ẽx

A(−µ̃x)

1 − A(−µ̃x)
, (4.57)

where ẽx and µ̃x are defined as in (4.44).

4.7.2 The queue length at arrival epochs for γ ≥ s

For γ ≥ s, at time T1 we already find a queue, since at this epoch all servers can serve
only the first s special customers, and the rest is waiting for service. Let W̃n be the waiting
time of the nth special customer. The random variable Qn satisfies the relations

{Q1 ≤ j} =





impossible event , for j = 0, 1, · · · , C0 − s − 1,

Ω , for j = C0 − s, C0 − s + 1, · · · ,

{Q2 ≤ 0} = {Tn−j−1 + Wn−j−1 < Tn},

for j = 1, 2, · · · , C0

{Qn ≤ j} =





{W̃C0+n−j−1 < Tn} , for n = 2, 3, · · · , j + 1,

{Tn−j−1 + Wn−j−1 < Tn} , for n = j + 2, j + 3, · · · ,

and for j = C0 + 1, C0 + 2, · · · ,

{Qn ≤ j} =





Ω , for n = 2, 3, · · · , j − C0 + 1,

{W̃C0+n−j−1 < Tn} , for n = j − C0 + 2, · · · , j + 1,

{Tn−j−1 + Wn−j−1 < Tn} , for n = j + 2, j + 3, · · · .
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Since G(x) and I(x) are continuous, it follows by using the identity (4.52), that for γ ≥ s
and |r| < 1, |q| < 1,

∞∑

n=1

rnE(qQn|C0 = γ)

= (1 − q)r
∞∑

j=γ−s

qj + (1 − q)

γ∑

j=0

qj

∞∑

n=2

rnP (Qn ≤ j)

+ (1 − q)
∞∑

j=γ+1

qj

∞∑

n=2

rnP (Qn ≤ j)

(4.58)

By exploring the events {Qn ≤ j} as we did above, we then obtain for γ ≥ s and |r| < 1,
|q| < 1,

∞∑

n=1

rnE(qQn|C0 = γ)

= rqγ−s + (1 − q)

γ∑

j=1

qj

j+1∑

n=2

rnP (W̃γ+n−j−1 < Tn)

+ (1 − q)

γ∑

j=0

qj

∞∑

n=j+2

rnP (Tn−j−1 + Wn−j−1 < Tn)

+ (1 − q)

[
∞∑

j=γ+1

qj

j−γ+1∑

n=2

rn +
∞∑

j=γ+1

qj

j+1∑

n=j−γ+2

rnP (W̃γ+n−j−1 < Tn)

]

+ (1 − q)
∞∑

j=γ+1

qj

∞∑

n=j+2

rnP (Tn−j−1 + Wn−j−1 < Tn)

= rqγ−s + (1 − q)r2

∞∑

j=γ+1

qj (1 − rj−γ)

(1 − r)

+ (1 − q)r
∞∑

j=0

(qr)j 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∞∑

n=1

rnAj+1(−ξ)E(exp(−ξWn)|C0 = γ)

+ (1 − q)

γ∑

j=1

qj 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

j+1∑

n=2

rnAn−1(−ξ)E(exp(−ξW̃γ+n−j−1))

+ (1 − q)r1−γ

∞∑

j=γ+1

(qr)j 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

γ∑

n=1

rnAn−γ+j(−ξ)E(exp(−ξW̃n)).

(4.59)

Since we assume that all the special customers have a common exponential service time
with rate w and are served first come first serve, then the departure process of the special
customers is a Poisson process with rate sw. It follows that for n = s + 1, s + 2, · · · , C0,

E
[
e−ξW̃n

]
=

(
sw

sw + ξ

)n−s

.
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If we substitute this into (4.59) and if we express
∑∞

n=1 rnE(exp(−ξWn)| C0 = γ) in terms
of (4.43), by applying a contour integration we then obtain for γ ≥ s and |r| < 1, |q| < 1,

∞∑

n=1

rnE(qQn|C0 = γ)

= rqγ−s + (1 − q)r2

∞∑

j=γ+1

qj (1 − rj−γ)

(1 − r)

+
r2(1 − q)

(1 − r)(1 − qr)
+
∑

x∈Rs
m

(1 − q)rA(−µx(r, 0))ex(r, 0, γ)

1 − qrA(−µx(r, 0))

+ (1 − q)

γ+1−s∑

j=1

qj(sw)d(j − 1 , 0 )

+ (1 − q)

γ+1−s∑

j=1

qj(sw)γ+1−j−s(γ − s − j − 1)!d1(j)

+ (1 − q)
r2−γ

(1 − r)

[
(qr)γ−s+2 − (qr)γ+1

(1 − qr)
− rs−γ(qr2)γ−s+2 − (qr2)γ+1

(1 − qr2)

]

+ (1 − q)rs−γ

γ∑

j=γ+2−s

(qr)j
[
(sw)s+1−γd(γ − s − 1, 0) + (sw)s+1(γ − 1)!d2(j)

]

+ (1 − q)r2−γ (1 − rs+1)

(1 − r)

(qr)γ+1

(1 − qr)
+ (1 − q)r2−γ+s (1 − rγ−s−1)

(1 − r)

(qr)γ+1

(1 − qr)
,

(4.60)

where

d(j, ξ) =

j−1∑

n=0

(sw)j−1−n(rA(−ξ)sw)n, (4.61)

d1(j) =
∂γ−s−j−1(A(−ξ)d(j − 1 , ξ)/ξ)

∂ξγ−s−j−1

∣∣∣
ξ=−sw

, (4.62)

and

d2(j) =
∂γ−1(As+1−γ+j(−ξ)d(γ − s + 1 , ξ)/ξ)

∂ξγ−1

∣∣∣
ξ=−sw

. (4.63)

The generating function of the kth moment of Qn can also be derived from (4.60). For
γ ≥ s, the generating function of the first moment is given in the following equation. For
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|r| < 1,

∞∑

n=1

rnE(Qn|C0 = γ) = r(γ − s) − r2

∞∑

j=γ+1

(1 − rj−γ)

1 − r
− r2

(1 − r)2

+
∑

x∈Rs
m

rA(−µx(r, 0))ex(r, 0, γ)

1 − rA(−µx(r, 0))
− (sw)

γ+1−s∑

j=1

d(j − 1, 0)

−
γ+1−s∑

j=1

(sw)γ+1−j−s(γ − s − j − 1)!d1(j)

− r4−s − r3

(1 − r)2
+

r6−s − r4+γ

(1 − r)(1 − r2)

− rs−γ

γ∑

j=γ+2−s

(r)j(sw)s+1−γd(γ − s − 1, 0)

− rs−γ

γ∑

j=γ+2−s

(r)j(sw)s+1(γ − 1)!d2(j)

− r3(1 − rs+1) + r3+s(1 − rγ−s−1)

(1 − r)2
.

(4.64)

If ρ < 1, then from (4.64) in the usual way we can obtain the expression for E(Q),
which coincides with (4.57).

4.8 The total number of customers at arrival epochs

Let Cn be the number of customers in the system just before the arrival epoch Tn. We
have that

P (Cn = k|C0 = γ) =
∑

x∈Rk
m

P (Xn = x|C0 = γ), k = 0, 1, · · · , s − 2

P (Cn = s − 1|C0 = γ) =
∑

x∈Rs−1
m

lim
φ→∞

Zn(0, φ, γ;x),

P (Cn = s|C0 = γ) = P (Qn = 0|C0 = γ) −
s−1∑

k=0

P (Cn = k|C0 = γ),

P (Cn = k|C0 = γ) = P (Qn = k − s|C0 = γ), k = s + 1, s + 2, · · · ;
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so that we have for |r| < 1, |q| ≤ 1,

∞∑

n=1

rnE(qCn|C0 = γ) =
s−2∑

k=0

(qk − qs)
∑

x∈Rk
m

Z(r, 0, γ;x)

+ qs−1(1 − q) lim
φ→∞

∑

x∈Rs−1
m

Z(r, 0, φ, γ;x)

+ qs

∞∑

n=1

rnE(qQn|C0 = γ).

(4.65)

4.8.1 The total number of customers at arrival epochs for γ < s

Let 1 be the c(s − 1)-dimensional row vector with all components equal to 1. From
Theorem 4.13 and Lemma 4.3.1 it follows that

lim
φ→∞

∑

x∈Rs−1
m

Z(r, 0, φ, γ;x) = 1K(r, 0, 0)−1Z(r, 0, 0, γ).

If we substitute this into (4.65), then by using (4.54) we obtain for C0 = γ < s,
|r| < 1, |q| < 1,

∞∑

n=1

rnE(qCn|C0 = γ)

=
s−2∑

k=0

(qk − qs)
∑

x∈Rk
m

Z(r, 0, γ;x) + qs−1(1 − q)1K(r, 0, 0)−1Z̄(r, 0, 0, γ)

+ qs r

1 − r
+ qs

∑

x∈Rs
m

(1 − q)rA(−µx(r, 0))ex(r, 0, γ)

1 − qrA(−µx(r, 0)
.

(4.66)

For ρ < 1, Cn weakly converges to a random variable C. Then for |q| < 1,

E(qC) =
s−2∑

k=0

(qk − qs)
∑

x∈Rk
m

Z̄(x) + qs−1(1 − q)1K(0)−1X̄ (0)

+ qs


1 +

∑

x∈Rs
m

ẽx

(1 − q)A(−µ̄x)

1 − qA(−µ̄x)


 ,

(4.67)

where ẽx and µ̃x are defined as in (4.44). The equation (4.67) coincides with (4.9) in [21].

The generating function of the kth moment of Cn can be derived from (4.66). For
γ < s, the generating function of the first moment is given by the following expression.
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For |r| < 1,

∞∑

n=1

rnE(Cn|C0 = γ) =
s−2∑

k=0

(k − s)
∑

x∈Rk
m

Z(r;x) − 1K−1(r, 0, 0)Z(r, 0, 0, γ)

+ s
r

1 − r
−
∑

x∈Rs
m

(rA(−µx(r, 0))ex(r, 0, γ)

1 − rA(−µx(r, 0))
.

(4.68)

If ρ < 1 then we have

E(C) =
s−2∑

k=0

(k − s)
∑

x∈Rk
m

Z(x) − 1K−1(0)X̄ (0) + s

−
∑

x∈Rs
m

ẽx

A(−µ̃x)

1 − A(−µ̃x)
,

(4.69)

where ẽx and µ̃x are defined as in (4.44).

4.8.2 The total number of customers at arrival epochs for γ ≥ s

Let 1 be the c(s − 1)-dimensional row vector with all components equal to 1. From
Theorem 4.13 and Lemma 4.3.1 it follows that

lim
φ→∞

∑

x∈Rs−1
m

Z(r, 0, φ, γ;x) = 1K(r, 0, 0)−1Z(r, 0, 0, γ) − 1Z̄+
1 (r, 0, 0, γ).
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If we substitute this into (4.65), then by using (4.54) we obtain for γ ≥ s, |r| < 1, |q| < 1,

∞∑

n=1

rnE(qCn|C0 = γ)

=
s−2∑

k=0

(qk − qs)
∑

x∈Rk
m

Z(r, 0, γ;x) + qs−1(1 − q)1K(r, 0, 0)−1Z̄(r, 0, 0, γ)

+ qs−1(1 − q)1Z̄+
1 (r, 0, 0, γ) + rqγ + (1 − q)qsr2

∞∑

j=γ+1

qj (1 − rj−γ)

1 − r

+
r2(1 − q)qs

(1 − r)(1 − qr)
+ qs

∑

x∈Rs
m

(1 − q)rA(−µx(r, 0))ex(r, 0, γ)

1 − qrA(−µx(r, 0))

+ (1 − q)qs

γ+1−s∑

j=1

qj(sw)d(j − 1 , 0 )

+ (1 − q)qs

γ+1−s∑

j=1

qj(sw)γ+1−j−s(γ − s − j − 1)!d1(j)

+ (1 − q)qs r2−γ

(1 − r)

[
(qr)γ−s+2 − (qr)γ+1

1 − qr
− rs−γ(qr2)γ−s+2 − (qr2)γ+1

1 − qr2

]

+ (1 − q)qsrs−γ

γ∑

j=γ+2−s

(qr)j(sw)s+1−γd(γ − s − 1, 0)

+ (1 − q)qsrs−γ

γ∑

j=γ+2−s

(qr)j(sw)s+1(γ − 1)!d2(j)

+ (1 − q)qsr2−γ (1 − rs+1)

(1 − r)

(qr)γ+1

(1 − qr)
+ (1 − q)r2−γ+s (1 − rγ−s−1)

(1 − r)

(qr)γ+1

(1 − qr)
,

(4.70)

where the functions d, d1, and d2 are defined in (4.61) - (4.63).

The generating function of the kth moment of Cn can be derived from (4.70). For
γ ≥ s, the generating function of the first moment is given by the following expression.
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For |r| < 1,

∞∑

n=1

rnE(Cn|C0 = γ) =
s−2∑

k=0

(k − s)
∑

x∈Rk
m

Z(r;x) − 1K−1(r, 0, 0)Z(r, 0, 0, γ)

− 1Z̄+
1 (r, 0, 0, γ) + γr − r2

∞∑

j=γ+1

(1 − rj−γ)

1 − r

− r2

(1 − r)2
−
∑

x∈Rs
m

(rA(−µx(r, 0))ex(r, 0, γ)

(1 − rA(−µx(r, 0))

−
γ+1−s∑

j=1

(sw)d(j − 1, 0) + (sw)γ+1−j−s(γ − s − j − 1)!d1(j)

− r4−s − r3

(1 − r)2
+

r6−s − r4+γ

(1 − r)(1 − r2)

− rs−γ

γ∑

j=γ+2−s

(r)j(sw)s+1−γd(γ − s − 1, 0)

− rs−γ

γ∑

j=γ+2−s

(r)j(sw)s+1(γ − 1)!d2(j)

− r3(1 − rs+1) + r3+s(1 − rγ−s−1)

(1 − r)2
.

(4.71)

If ρ < 1 then from (4.71) in the usual way we obtain the expression for E(C), which
coincides with (4.69).

4.9 Queue length in continuous time

Let Q∗
t be the queue length at time t. Its sample functions are considered to be left

continuous. By conditioning on the number of arrivals up to time t we have for j > γ and
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t > 0,

P (Q∗
t ≤ j)

= P (Nt ≤ j − γ) +
∞∑

n=1

P (Q∗
t ≤ j,Nt = n + j − γ)

= P (Tj−γ+1 > t) +

γ∑

n=1

P (W̃n < t, Tn+j−γ ≤ t < Tn+j−γ+1)

+
∞∑

n=1

P (Tn + Wn < t, Tn+j ≤ t < Tn+j+1)

= 1 − P (Tj−γ+1 ≤ t) +

∫ t

0

{1 − F (t − u)}du

γ∑

n=1

P (W̃n < t, Tn+j−γ ≤ u)

+

∫ t

0

{1 − F (t − u)}du

∞∑

n=1

P (Tn + Wn < t, Tn+j ≤ u).

(4.72)

Since G(x) is absolutely continuous, and we assume that the function F (x) is continuous,
(4.72) becomes

P (Q∗
t ≤ j) = 1 − P (Tj−γ+1 ≤ t)

+
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∫ t

0

{1 − F (t − u)}

.du

γ∑

n=1

E(exp(−ξ(W̃n − t))1(Tn+j−γ ≤ u))

+
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∫ t

0

{1 − F (t − u)}

.du

∞∑

n=1

E(exp(−ξ(Tn + Wn − t))1(Tn+j ≤ u)).

(4.73)

For j = 0, we obtain

P (Q∗
t = 0) =

∞∑

n=1

P (Q∗
t = 0, Nt = n) =

∞∑

n=1

P (Tn + Wn < t, Tn ≤ t < Tn+1),

and for 0 < j ≤ γ,
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P (Q∗
t ≤ j)

=
∞∑

n=1

P (Q∗
t ≤ j,Nt = n)

=

j∑

n=1

P (W̃γ−j+n < t, Tn ≤ t < Tn+1)

+
∞∑

n=j+1

P (Tn−j + Wn−j < t, Tn ≤ t < Tn+1)

=

∫ t

0

{1 − F (t − u)}du

γ∑

n=γ−j+1

P (W̃n < t, Tn−γ+j ≤ u)

+

∫ t

0

{1 − F (t − u)}du

∞∑

n=1

P (Tn + Wn < t, Tn+j ≤ u)

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∫ t

0

{1 − F (t − u)}du

γ∑

n=γ−j+1

E(e−ξ(W̃n−t1(Tn−γ+j ≤ u))

+
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∫ t

0

{1 − F (t − u)}du

∞∑

n=1

E(e−ξ(Tn+Wn−t)1(Tn+j ≤ u)).

(4.74)
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Since E(qQ∗
t ) = (1 − q)

∑∞
j=0 qjP (Q∗

t ≤ j), we have for |q| ≤ 1,

E(qQ∗
t |C0 = γ)

= (1 − q)

γ∑

j=1

qj 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∫ t

0

{1 − F (t − u)}

.du

γ∑

n=γ−j+1

E(e−ξ(W̃n−t)1(Tn−γ+j ≤ u))

+ (1 − q)

γ∑

j=0

qj 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∫ t

0

{1 − F (t − u)}

.du

∞∑

n=1

E(e−ξ(Tn+Wn−t)1(Tn+j ≤ u)|C0 = γ)

+ (1 − q)
∞∑

j=γ+1

qj(1 − P (Tj−γ+1 ≤ t))

+ (1 − q)
∞∑

j=γ+1

qj 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∫ t

0

{1 − F (t − u)}

.du

γ∑

n=1

E(e−ξ(W̃n−t)1(Tn+j−γ ≤ u))

+ (1 − q)
∞∑

j=γ+1

qj 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

∫ t

0

{1 − F (t − u)}

.du

∞∑

n=1

E(e−ξ(Tn+Wn−t)1(Tn+j ≤ u)|C0 = γ).

(4.75)
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4.9.1 Queue length in continuous time for γ < s

If γ < s, it is clear that W̃n = 0, n = 1, 2, · · · , γ. Then from (4.75)
∫ ∞

0

exp(−ηt)E(qQ∗
t |C0 = γ)dt

=(1 − q)

[
γ∑

j=1

qj 1 − A(η)

η

j∑

n=1

An−1(η)

+

γ∑

j=0

qj

2πi

∫ i∞+0

−i∞+0

dξ

ξ

1 − A(η − ξ)

(η − ξ)

∞∑

n=1

E(exp(−ηTn − ξWn)|C0 = γ)Aj(η − ξ)

+
∞∑

j=γ+1

qj

(
1

η
− Aj−γ(η)

η
+

(1 − A(η))

η

γ∑

n=1

An+j−γ−1(η)

+
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

1 − A(η − ξ)

(η − ξ)

∞∑

n=1

E(exp(−ηTn − ξWn)|C0 = γ)Aj(η − ξ)

)]
.

(4.76)

From (4.33), (4.13), (4.9) and Lemma 4.3.1, we have that for γ < s,

∞∑

n=1

E(exp(−ηTn − ξWn)|C0 = γ) =
1

1 − A(η)
+
∑

x∈Rs
m

ex(1, η, γ)
ξ

ξ − µx(1, η)
,

where ex(r, η, γ) is defined in (4.40). Substituting this into (4.76), then by applying contour
integration we obtain for γ < s, |q| ≤ 1, Re(η) > 0,

∫ ∞

0

exp(−ηt)E(qQ∗
t |C0 = γ)dt

=(1 − q)

[
γ∑

j=1

qj 1 − A(η)

η

j∑

n=1

An−1(η) +
(1 − qγ+1Aγ+1(η))

η(1 − qA(η))

+
∑

x∈Rs
m

ex(1, η)
(1 − A(η − µx(1, η))) (1 − qγ+1Aγ+1(η − µx(1, η)))

(η − µx(1, η))(1 − qA(η − µx(1, η)))

+
∑

x∈Rs
m

ex(1, η)
(1 − A(η − µx(1, η))) qγ+1Aγ+1(η − µx(1, η))

(η − µx(1, η))(1 − qA(η − µx(1, η)))

+
qγ+1

η(1 − q)
− qγ+1A(η)

η(1 − qA(η))
+

qγ+1
∑γ

n=1 An(η)

η(1 − qA(η))
+

qγ+1Aγ+1(η)

η(1 − qA(η))

]
.

(4.77)

For ρ < 1, |q| ≤ 1, let Q∗ be the queue length in continuous time in steady state. We find
from (4.77) in the usual way

E(qQ∗

) = 1 +
∑

x∈Rs
m

ẽx

(1 − q)(1 − A(−µ̃x))

−µ̃x(1 − qA(−µ̃x))
, (4.78)

in accordance to equation (3.9) in [23].
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4.9.2 Queue length in continuous time for γ ≥ s

If γ ≥ s, it is clear that W̃n = 0 for n = 1, 2, · · · , s, and W̃n > 0 for n = s + 1, · · · , γ.
It follows that

γ∑

j=1

qj

∫ t

0

{1 − F (t − u)}du

γ∑

n=γ−j+1

P (W̃n < t, Tn−γ+j ≤ u)

=

γ−s−1∑

j=1

qj

∫ t

0

{1 − F (t − u)}du

γ∑

n=γ−j+1

P (W̃n < t, Tn−γ+j ≤ u)

+

γ∑

j=γ−s

qj

∫ t

0

{1 − F (t − u)}du

γ∑

n=γ−j+1

P (Tn−γ+j ≤ u),

(4.79)

and

∫ t

0

{1 − F (t − u)}du

γ∑

n=1

P (W̃n < t, Tn−γ+j ≤ u)

=

∫ t

0

{1 − F (t − u)}du

s∑

n=1

P (Tn−γ+j ≤ u)

+

∫ t

0

{1 − F (t − u)}du

γ∑

n=s+1

P (W̃n < t, Tn−γ+j ≤ u).

(4.80)

Furthermore we have from (4.33), (4.13), (4.9) and Lemma 4.3.1, that for γ ≥ s,

∞∑

n=1

E(exp(−ηTn − ξWn)|C0 = γ) =
1

1 − A(η)
+
∑

x∈Rs
m

ex(1, η, γ)
ξ

(ξ − µx(1, η))

+ 1K(1, η, ξ)[Z̄+
1 (1, η, ξ, γ) − Z̄+

1 (1, η, 0, γ)].

(4.81)
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If we substitute (4.79), (4.80), and (4.81) into (4.75), then similar to the case γ < s, we
obtain for γ ≥ s, |q| ≤ 1, Re(η) > 0,

∫ ∞

0

exp(−ηt)E(qQ∗
t |C0 = γ)dt

=(1 − q)

[
γ∑

j=γ−s

qj 1 − A(η)

η

j∑

n=1

An−1(η)

+

γ−s−1∑

j=1

qj

(
1 − A(η)

η

γ∑

n=γ−j+1

(
sw

sw + η

)n−s

An−γ+j−1(η)

)

+
1

η(1 − qA(η))
+

qγ+1

η(1 − q)
− qγ+1A(η)

η(1 − qA(η))
+

qγ+1
∑s

n=1 An(η)

η(1 − qA(η))

+
∑

x∈Rs
m

ex(1, η)
(1 − A(η − µx(1, η))) (1 − qγ+1Aγ+1(η − µx(1, η)))

(η − µx(1, η))(1 − qA(η − µx(1, η)))

+
∑

x∈Rs
m

ex(1, η)
(1 − A(η − µx(1, η))) qγ+1A(η − µx(1, η))

(η − µx(1, η))(1 − qA(η − µx(1, η)))

+
∞∑

j=γ+1

qj

(
1 − A(η)

η

γ∑

n=s+1

(
sw

sw + η

)n−s

An−γ+j−1(η)

)]
.

(4.82)

If ρ < 1, |q| ≤ 1, then from (4.77) in the usual way we obtain the expression for E(qQ),
which coincides with (4.78).

4.10 The total number of customers in continuous

time

Let C∗
t be the number of customers at time t, which we consider to be a left-continuous

process. Observe that

P (C∗
t = s − 1|C0 = γ) = P (W ∗

t = 0|C0 = γ) −
s−2∑

j=0

P (C∗
t = l|C0 = γ), (4.83)

P (C∗
t = s|C0 = γ) = P (Q∗

t = 0|C0 = γ) − P (W ∗
t = 0|C0 = γ) (4.84)

P (C∗
t = l|C0 = γ) = P (Q∗

t = l − s|C0 = γ), l = s + 1, s + 2, · · · . (4.85)
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To find the P (C∗
t = l|C0 = γ) for l = 0, 1, · · · , s − 2, we can use the same derivation as in

section 3.3 in [23]. It yields for γ < s, Re(η) > 0, l = 0, 1, 2, · · · , s − 2;

∫ ∞

0

exp(−ηt)P (C∗
t = l|C0 = γ)dt

=
∑

x∈Rl
m




s−1∑

k=l

∑

y∈Rk
m

∑

ν≤y−x

(
y

x; ν

)
(−1)ν11 − A(η + xb + νb)

η + xb + νb

.

m∑

i=1

piZ(1, η, γ;y − 1i) −
∑

y∈Rs−1
m

∑

ν≤y−x

(
y

x; ν

)
(−1)ν1

.
∑

z∈Rs
m

V (1, η, γ, z)

xb + νb + µz(1, η)

m∑

j=1

(yj + 1)bjLy+1j ,z

.

{
1 − A(η + xb + νb)

η + xb + νb
− 1 − A(η − µz(1, η))

η − µz(1, η)

}]
,

(4.86)

where the function V (1, η, z) is defined in (4.32). Moreover, for γ ≥ s, Re(η) > 0, l =
0, 1, 2, · · · , s − 2;

∫ ∞

0

exp(−ηt)P (C∗
t = l|C0 = γ)dt

=
∑

x∈Rl
m




s−1∑

k=l

∑

y∈Rk
m

∑

ν≤y−x

(
y

x; ν

)
(−1)ν11 − A(η + xb + νb)

η + xb + νb

.

m∑

i=1

piZ(1, η, γ;y − 1i) −
∑

y∈Rs−1
m

∑

ν≤y−x

(
y

x; ν

)
(−1)ν1

m∑

j=1

(yj + 1)bjLy+1j ,z

.


∑

z∈Rs
m

(
V1(1, η, γ, z)

−xb − νb − µz(1, η)
−

a∑

i=1

ai(x)V2(1, η;x)

(−xb − νb + w)a−i+1

)

.
(1 − A(η + xb + νb))

(η + xb + νb)
+
∑

z∈Rs
m

(xb + νb)

µz(1, η)(xb + νb + µz(1, η))

.
(1 − A(η − µz(1, η)))

η − µz(1, η)
V1(1, η, γ; z) +

∑

z∈Rs
m

a∑

i=1

(xb + νb)ai(z)V2(1, η; z)

.
1

(i − 1)!
lim

ξ→−w

∂i−1

∂ξi−1

(1 − A(η − ξ))

ξ(xb + νb + ξ)(η − ξ)

)]
.

(4.87)

An inversion of the transforms (4.86) and (4.87) will yield P (C∗
t = l|C0 = γ) for l =

0, 1, · · · , s − 2. The probabilities for l = s − 1 and l = s can be obtained from (4.83) and
(4.84) with help of (4.47), (4.48), and (4.77).



92 The GI/Hm/s queue

For ρ < 1, we have for l = 0, 1, 2, · · · , s − 2;

P (C∗ = l)

=
∑

x∈Rl
m




s−1∑

k=l

∑

y∈Rk
m

∑

ν≤y−x

(
y

x; ν

)
(−1)ν11 − A(xb + νb)

α(xb + νb)

m∑

i=1

piZ̄(y − 1i)

−
∑

y∈Rs−1
m

∑

ν≤y−x

(
y

x; ν

)
(−1)ν1

∑

z∈Rs
m

V̂ (z)

−xb − νb − µ̃z

.
m∑

j=1

(yj + 1)bjLy+1j ,z

[
(1 − A(xb + νb))

α(xb + νb)

(1 − A(−µ̃z))

αµ̃z

]]
,

(4.88)

in accordance with equation (3.14) in [23]. The probabilities P (C∗ = l) for l = s − 1 and
l = 2 can be obtained from the steady-state version of (4.83) and (4.84), i.e.

P (C∗ = s − 1|C0 = γ) = P (W ∗ = 0|C0 = γ) −
s−2∑

j=0

P (C∗ = l|C0 = γ), (4.89)

P (C∗ = s|C0 = γ) = P (Q∗ = 0|C0 = γ) − P (W ∗ = 0|C0 = γ), (4.90)

where P (W ∗ = 0|C0 = γ) and P (Q∗ = 0|C0 = γ) can be obtained from the inversion of
(4.49) and (4.78).

4.11 Numerical Examples

In this section, we give some examples of the distributions of interest studied in the
previous sections. We restrict ourselves to the model GI/H2/s in which, as in [22], the
elements of

⋃s−2
k=0 Rk

2 = {(i, j)|i ≥ 0, j ≥ 0, i + j ≤ s − 2} are numbered by using the one
to one correspondence

(i, j) → i + 1 + (s + i + j + 1)(s − i − j − 2)/2,

and the elements in Rs−1
2 = {(j − 1, s − j)|j = 1, · · · , s} are numbered by the one to one

correspondence (j − 1, s − j) → j.
In particular we consider the system M/H2/s for s = 2, in which the service time

distribution function G is given by

G(x) =

{
0.7(1 − exp(−2.5x)) + 0.3(1 − exp(−1.5x)) , x ≥ 0,

0 , x < 0.
(4.91)

The mean of the service time is then given by 24/50. The Laplace-Stieltjes transform of
the inter-arrival time is given by

A(φ) =
1.5

φ + 1.5

thus the inter-arrival time has an exponential distribution with mean 2/3. The traffic
intensity is 0.72.
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4.11.1 Numerical results on the phase vectors

For the system under consideration, the system of equation (4.24) turns out to be a
single equation since the set

⋃s−2
k=0 Rk

m consists of one element, i.e. the vector (0, 0). We
then can solve the system for η = 0 analytically to get Z(r, 0, γ), the generating function
of P (Xn = (0, 0)|C0 = γ). We invert this generating function numerically by applying the
numerical inversion algorithm described in Abate & Whitt [3], written in FORTRAN 90,
to get P (Xn = (0, 0)|C0 = γ) for some velues of n.

The value of P (Xn = (0, 0)|C0 = γ) which is obtained from the inversion can be
substituted into (4.21) to obtain the generating functions of P (Xn = (0, 1)|C0 = γ) and
P (Xn = (1, 0)|C0 = γ). Again, we apply numerical inversion to get these probabilities.

The steady-state probabilities P (X = (0, 0)), P (X = (0, 1)), and P (X = (1, 0)) can be
obtained from the equations (4.38) and (4.37).

In figure 4.2 we give the probabilities of the time-dependent phase vectors P (Xn =
(0, 0)|C0 = γ), P (Xn = (0, 1)|C0 = γ), and P (Xn = (1, 0)|C0 = γ) for some values of n
and its steady-state probabilities, for γ = 0.

P(X=(0,1))

<>=P(Xn=(1,0))

o=P(Xn=(0,1))

x=P(Xn=(0,0))

P(X=(1,0))

P(X=(0,0))

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20
x

Figure 4.2: P (Xn = x) for some n with X1 = (0, 0)

4.11.2 Numerical results on some distributions of interest

We give some numerical results on the distributions we discussed in sections 4.5 to
4.8 for some values of γ. The transforms of all distributions in those sections involve the
generating function Z̄(r, η, 0, γ), where from (4.21) its explicit expression can be obtained
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by first solving the system (4.24) and factoring the matrix H(r, η, φ), and then substituting
the results into (4.20) and Lemma 4.3.1.

The Laplace-Stieltjes transform of the actual waiting time in steady state is given by the
equation (4.44). We can invert this transform analytically to get the distribution. For the
time-dependent case, the Laplace-Stieltjes transform of the actual waiting time for γ < s
or (γ ≥ s,X1 /∈ Rs−1

m ) is given by the generating function (4.43), and for γ ≥ s,X1 ∈ Rs−1
m

it is given by the generating function (4.39). Since these double transforms are rational
functions with respect to one variable, first we invert it analytically and then invert it
numerically by applying the numerical inversion algorithm for generating function in [3].
Some results on the distribution of the actual waiting time for some values of γ can be seen
in figures 4.3 to 4.6. The time-dependent distributions in figures 4.3 to 4.5 are obtained
by inverting the generating function (4.43) analytically and then numerically. The time-
dependent distribution in figure 4.6 is obtained from the generating function (4.39) in the
same way.

n=3

n=1

steady state

n=9

n=5

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

Figure 4.3: P (Wn ≤ x|C0 = 0) for some n and P (W ≤ x), X1 = (0, 0).

The Laplace-Stieltjes transform of the virtual waiting time in steady state is given by
the equation (4.49). This transform can be inverted analytically to get the distribution. For
the time-dependent distribution, we invert the double Laplace-Stieltjes transform (4.47)
in the same way as for the actual waiting time. Some results on the distribution of the
virtual waiting time can be seen in figures 4.7 to 4.10.

The steady-state expectations of the queue length and of the number of customers
at arrival epochs are given by (4.57) and (4.69). The transform of the time-dependent
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<---n=6

n=2

<---n=4

steady state

n=1

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
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Figure 4.4: P (Wn ≤ x|C0 = 1) for some n and P (W ≤ x), X1 = (0, 1)

expectation of the queue length at arrival epochs for γ < s and for γ ≥ s are given by the
generating functions (4.56) and (4.60), respectively. The time-dependent transforms of the
number of customers for γ < s and for γ ≥ s are given by (4.56) and (4.68), respectively.
We perform a numerical inversion of these transforms, and the results can be seen in figures
4.11 to 4.12.
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Figure 4.5: P (Wn ≤ x|C0 = 1) for some n and P (W ≤ x), X1 = (1, 0)
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Figure 4.6: P (Wn ≤ x|C0 = 2) for some n and P (W ≤ x), X1 = (0, 1)
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Figure 4.7: P (W ∗
t ≤ x|C0 = 0) for some t and P (W ∗ ≤ x), X1 = (0, 0).
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Figure 4.8: P (W ∗
t ≤ x|C0 = 1) for some t and P (W ∗ ≤ x), X1 = (0, 1).
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Figure 4.9: P (W ∗
t ≤ x|C0 = 1) for some t and P (W ∗ ≤ x), X1 = (1, 0).
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Figure 4.10: P (W ∗
t ≤ x|C0 = 2) for some t and P (W ∗ ≤ x), X1 = (0, 1).
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Figure 4.11: E(Qn|C0 = 1) for some n and E(Q), X1 = (1, 0).
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Figure 4.12: E(Cn|C0 = 1) for some n and E(C), X1 = (1, 0).





Chapter 5

Markovian Fluid Flow Model

5.1 Introduction

In this chapter we study a fluid flow model in which the rate of the input process {at}
depends on the state of a finite-state continuous-time irreducible Markov chain {Jt} with
state space N = {1, 2, . . . , N}. More precisely, the slope of the process {at} is constant
between transitions of {Jt} and equal to ci when {Jt} is in state i. The input flows into
an infinite buffer that has maximal output rate c, and initially has a content v. We define
the net input St up to time t as the difference between the total traffic received up to time
t and the maximal output traffic up to time t. Then the rate of the net input process {St}
is also constant between transitions of {Jt}, and is equal to ri = ci − c. The buffer content
Vt at time t ≥ 0 is found from St by restricting it to nonnegative values, i.e. by applying
the reflection operation

Vt = v + St + It

where

It = max

{
−v − inf

0≤ν≤t
Sν , 0

}
.

Let T0 = 0 and T1, T2, . . . be the transition epochs of the process {Jt} with T1 > 0. We
define W0 = v and for n = 1, 2, . . . , Wn = VTn and Xn = JT−

n
, where T−

n is the state of
{Jt} just before transition epochs. We are interested in the probability distribution of the
buffer content in steady state and as well as for the time-dependent case, for which the
distribution functions at time t ≥ 0 are denoted by

Fij(x, t, v) = P (Vt ≤ x, Jt = j|X1 = i, V0 = v), i, j ∈ N .

This model and its special cases, as well as generalizations of it, have been studied by
several authors. Many of them studied the special case in which the system consists of a
finite number of sources (input lines), each of which alternates between the ’on’ and the
’off’ state. All on-periods have the same exponential distribution and, similarly, all off-
periods. Moreover all on- and off-periods are independent random variables. The sources
are merged into a single data stream via a switch with a buffer.

When a source is ’on’ it feeds data into the switch with rate b, while the buffer has a
maximal output rate a. The net input St up to time t is the difference between the total

101
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traffic received up to time t and at, i.e. the maximal output traffic up to time t. We see
that this system is a special case of the fluid flow model, where {Jt} is the number of active
sources at time t and ri = ib − a is the net input rate when there are i active sources.
Moreover we see that {Jt} is a Birth and Death process.

This special case has been studied by Anick, Mitra, and Sondhi(AMS) [4], and Kosten [31].
They determined the distribution function of the buffer content in steady state by deriving
the Kolmogorov forward equations for the Markov chain {(Vt, Jt), t ≥ 0} and analyzing
this system of equations. Furthermore, in [4] and [31], G(u), -the steady-state probability
that the buffer content exceeds a certain level u- is studied. In AMS [4] an asymptotic
formula for G(u), is given, of the form Ce−αu, where C is a constant and α is a positive
parameter. An approximation method to calculate G(u) is also given in this paper. In [31]
the same asymptotic formula for G(u) is derived, and a simulation method is used to find
the constant C.

The model in which {Jt} is a general Markov chain has been studied by Regterschot [38],
Asmussen [8], Rogers [40], and Pacheco & Prabhu [37]. The first three authors consider the
model with an initially empty buffer, and the last ones studied the non-empty case. With
a decomposition method, Asmussen [8] proved that the steady state distribution of the
buffer content is of phase type and proposed an algorithm to compute its phase generator
U. Regterschot [38], Rogers [40] and Pacheco & Prabhu [37] use Wiener-Hopf factorization
of a certain matrix. As a main result, they obtain the steady state distribution function
of the buffer content. In [38], an explicit formula for the steady state distribution function
is obtained not only for continuous time but also at transition epochs. Furthertmore, an
explicit formula for G(u) is given.

The transient behavior of the buffer content for the present model is studied by Tanaka
et al. [42]. They refer to the model as Markov modulated input rate(MMIR) model, since
the input is generated by a Markov modulated process. The Laplace transform of the
joint distribution of the buffer content and the state of the input process is derived. By
analyzing the properties of the eigenvalues and eigenvectors of a certain matrix they found
an explicit expression for this transform.

In solving the present problem, we use the same technique as in [38] but we give
some corrections for the factorization. In section 5.2 we consider the process {(Wn, Tn,
Xn)} and derive Wiener-Hopf type equations for the transform of the joint distribution of
{(Wn, Tn, Xn)}. Then in section 5.3, we solve this system of equation with Wiener-Hopf
factorization, which boils down to finding some eigenvalues and eigenvectors of a certain
matrix and solving some matrix equations. The factorization is similar to the one in [38]
but since we have initially a non-empty buffer we need to decompose a certain matrix as
an additional step to complete the solution. In section 5.4 we derive an explicit expression
for the steady state distribution function of the buffer content at transition epochs by
considering the process {(Wn, Xn)}. This result is found from the generating function of
transforms in section 5.3 using Abel’s limit theorem, and with the factorization we obtain
an explicit expression for the steady state distribution function after we analytically invert
its transform. In section 5.5 we derive the double Laplace transform of the time-dependent
distribution function of the buffer content and again after a limiting operation we get the
Laplace transform of the steady state distribution. The explicit expression for the steady
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state distribution can be found by inverting this transform, as shown in subsection 5.5.1.
Since the double Laplace transform consists of terms involving multiplication of exponential
and rational terms in one variable only, to get the time-dependent distribution of the buffer
content we first invert it analytically. The result of this analytical inversion can be found
in subsection 5.5.2, and it shows a structure quite similar to the one in [42].

We study the behavior of the time-dependent distribution of Vt as t increases, by
referring to the relaxation time (see Blanc and van Doorn[14]), a measure of the speed
of convergence to the steady-state distribution. In Tanaka, et al.[42], the analysis ends
with a conjecture stating that the relaxation time for the present model depends on the
generator of the underlying Markov chain, but not on the rates of the input flow. We study
the relaxation time in subsection 5.5.3, and show that the relaxation time also depends on
the net input rates ri, i ∈ N .

We implement the numerical inversion algorithm proposed in Abate and Whitt[3] to
get the desired distributions. Some examples for these distributions can be found in section
5.6.

We will use the following notations: x+ = max(0, x), and x− = min(0, x). 1 is the
indicator function, 1 is the N -dimensional column vector with all components equal to 1,
1i is the K̄-dimensional column vector with i-th component 1 and all other component
equal to 0, where K̄ is an integer defined in section 5.2. I is the identity matrix, Ikl is the
k × l-matrix with elements δij, where δij is Kronecker’s delta, i.e., δij = 0, for i 6= j, and
δjj = 1. If A is an N ×N -dimensional matrix, the i-th column of A is denoted by Ai, and
the i-th row of A is denoted by Ai.

5.2 System of Wiener-Hopf-type equations

Let Q be the infinitesimal generator of the Markov chain {Jt} with elements Qij, and let P
be the transition probability matrix of {Xn} with elements Pij. We assume that the matrix
Q is indecomposable. Define qi = −Qii =

∑
i6=j Qij, i, j ∈ N . Let q = diag(q1, . . . , qN) be

the N × N dimensional diagonal matrix with elements qi. It follows that

P = q−1(Q + q).

The stationary probabilities limt→∞ P (Jt = i) are denoted by πi, i ∈ N and π denotes
the N− dimensional row vector with components πi. We assume that

∑N
i=1 πiri < 0 to

ensure stability. The stationary probabilities limn→∞ P (Xn = i) are denoted by γi, i ∈ N
and γγγ denotes the N -dimensional row vector with components γi. It follows that

γi =
πiqi

πq1πq1πq1
, i = 1, 2, · · · , N. (5.1)

The traffic intensity ρ, i.e. the ratio of the average input rate and the maximal output rate
, is ρ =

∑N
i=1 πici/c.

We assume that for i ∈ N , ci 6= c so that ri 6= 0 for i ∈ N . Let R− = {i|ri <
0, i = 1, . . . , N} and R+ = {i|ri > 0, i = 1, . . . , N}. Suppose that |R−| = K̄. This implies
that |R+| = N − K̄. Let r = diag(r1, . . . , rN). Without loss of generality, suppose that
R− = {1, 2, . . . , K̄}.
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Let T0 = 0 and T1, T2, . . . be the transition epochs of the process {Jt} with T1 > 0, and
let An = Tn − Tn−1 be the inter-jump time, n = 1, 2, . . .. Define Rn =

∑
k rk1{Xn = k},

we then have the relation

Wn+1 = [Wn + Rn+1An+1]
+.

Define for Re(η) ≥ 0, Re(φ) ≥ 0,

Z0
i (φ, η, v) = E

(
e−φW1−ηT11 (X1 = i)|X1 = i, V0 = v

)
, (5.2)

and define for (|z| < 1, Re(η) ≥ 0, Re(φ) ≥ 0) or (|z| ≤ 1, Re(η) > 0, Re(φ) ≥ 0) or
(|z| ≤ 1, Re(η) ≥ 0, Re(φ) > 0)

Zij(z, φ, η, v) =
∞∑

n=1

znE
(
e−φWn−ηTn1 (Xn = j)|X1 = i, V0 = v

)
.

Define for Re(φ) ≤ 0,

Vij(z, φ, η, v) =
∞∑

n=1

zn+1E
((

1 − e−φ[Wn+Rn+1An+1]−
)

e−η(Tn+An+1)1 (Xn = j)|X1 = i, V0 = v
)
,

and for Re(φ) = 0,

Gij(φ, η) = E
(
e−(rjφ+η)An+11 (Xn+1 = j)|Xn = i

)
.

Let Z(z, φ, η, v),V(z, φ, η, v) and G(φ, η) be N×N− matrices with elements Zij(z, φ, η, v),
Vij(z, φ, η, v) and Gij(φ, η) respectively. We then obtain the following system of Wiener-
Hopf equations.

Theorem 5.2.1
For Re(φ) = 0 and (|z| ≤ 1, Re(η) > 0) or (|z| < 1, Re(η) ≥ 0) we have

Z(z, φ, η, v)(I − zG(φ, η)) = zZ0(φ, η, v) + V(z, φ, η, v), (5.3)

where

Z0(φ, η, v) = diag(Z0
1(φ, η, v), Z0

2(φ, η, v), . . . , Z0
N(φ, η, v))

with

Z0
i (φ, η, v) =





e−φv qi

φri+η+qi
, if ri > 0

qi

φri+η+qi

[
e−φv − e(η+qi)v/ri

]
+ qie

(η+qi)v/ri

η+qi
, if ri < 0.

(5.4)

Proof. By the identity

e−φx+

= e−φx + 1 − e−φx−
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we have for Re(φ) = 0, Re(η) ≥ 0

E
(
e−φWn+1−ηTn+11 (Xn+1 = j)|X1 = i, V0 = v

)

= E
(
e−φ[Wn+Rn+1An+1]+e−η(Tn+An+1)1 (Xn+1 = j)|X1 = i, V0 = v

)

= E
(
e−φ(Wn+Rn+1An+1)e−η(Tn+An+1)1 (Xn+1 = j)|X1 = i, V0 = v

)

+E
((

1 − e−φ[Wn+Rn+1An+1]−
)

e−η(Tn+An+1)1 (Xn+1 = j)|X1 = i, V0 = v
)

= E
(
e−φWn−ηTn−(φRn+1+η)An+11 (Xn+1 = j)|X1 = i, V0 = v

)

+E
((

1 − e−φ[Wn+Rn+1An+1]−
)

e−η(Tn+An+1)1 (Xn+1 = j)|X1 = i, V0 = v
)

.

(5.5)

Moreover

E
(
e−φWn−ηTn−(φRn+1+η)An+11 (Xn+1 = j)|X1 = i, V0 = v

)

=
N∑

k=1

E
(
e−φWn−ηTn1 (Xn = k)|X1 = i, V0 = v

)

.E
(
e−(φRn+1+η)An+11 (Xn+1 = j)|Xn = k

)

=
N∑

k=1

E
(
e−φWn−ηTn1 (Xn = k)|X1 = i, V0 = v

)

.E
(
e−(φrj+η)An+1)1 (Xn+1 = j)|Xn = k

)

=
N∑

k=1

E
(
e−φWn−ηTn1 (Xn = k)|X1 = i, V0 = v

)
Gkj(φ, η).

Substituting this into (5.5) we get

E
(
e−φWn+1−ηTn+11 (Xn+1 = j)|X1 = i, V0 = v

)

=
N∑

k=1

E
(
e−φWn−ηTn1 (Xn = k)|X1 = i, V0 = v

)
Gkj(φ, η)

+E
((

1 − e−φ[Wn+Rn+1An+1]−
)

e−η(Tn+An+11 (Xn+1 = j)|X1 = i, V0 = v
)

If we multiply by zn+1 and sum over n this yields for (Re(φ) = 0, Re(η) ≥ 0, |z| < 1) or
(Re(φ) = 0, Re(η) > 0, |z| ≤ 1),

Zij(z, φ, η, v) − zδijZ
0
i (φ, η, v) = z

N∑

k=1

Zik(z, φ, η, v)Gkj(φ, η) + Vij(z, φ, η, v)

and we get equation (5.3). It remains to verify the expression for Z0
i (φ, η, v). To this end
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we note that

Z0
i (φ, η, v) = E

(
e−φW1−ηT11 (X1 = i)|X1 = i, V0 = v

)

=

∫ ∞

0

E
(
e−φ[v+riT1]+−ηT1|T1 = u

)
qie

−qiudu

=

∫ ∞

0

e−φ[v+riu]+−ηuqie
−qiudu.

So, for ri < 0,

Z0
i (φ, η, v) =

∫ −v/ri

0

e−φv−(φri+η)uqie
−qiudu +

∫ ∞

−v/ri

e−ηuqie
−qiudu

= e−φvqi

[−e(φri+η+qi)v/ri + 1

φri + η + qi

]
+

qie
(η+qi)v/ri

η + qi

,

and for ri > 0,

Z0
i (φ, η, v) =

∫ ∞

0

e−φv−(φri+η)uqie
−qiudu

= e−φv qi

φri + η + qi

.

�

The system (5.3) is the generalization of the system in [38], and will be solved by
applying the Wiener-Hopf factorization technique.

5.3 Solution of the system of Wiener-Hopf equations

In order to solve the system (5.3) we first factorize the symbol

H(z, φ, η) = I − zG(φ, η), (5.6)

i.e. for Re(φ) = 0, we try to find a factorization

H(z, φ, η) = H+(z, φ, η)H−(z, φ, η)

where

H+(z, φ, η) is analytic for Re(φ) > 0, and continuous and bounded for
Re(φ) ≥ 0, and non-singular in Re(φ) > 0.

H−(z, φ, η) is analytic for Re(φ) < 0, and continuous and bounded for
Re(φ) ≤ 0, and non-singular in Re(φ) < 0.
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In Arjas [6], the probabilistic interpretation of these factors is given.

To find H+(z, φ, η) and H−(z, φ, η) first we consider the following .

With the definition of q and r we can write the matrix G(φ, η) as

G(φ, η) = q−1(Q + q)q(q + φr + ηI)−1 = Pq(q + φr + ηI)−1. (5.7)

Let αi(η) = (η + qi)/ri, i = 1, 2, . . . , N. Define N × N−dimensional matrices

ααα(η) = diag(α1(η), . . . , αN(η)),

ααα = ααα(0) = diag

(
q1

r1

, . . . ,
qN

rN

)
,

L(z, φ, η) = φI + ααα(η) − zααα − zr−1Q,

and

M(φ, η) = ααα(η) + φI.

It follows that
H(z, φ, η) = ααα−1L(z, φ, η)αααM−1(φ, η). (5.8)

From (5.8) we have that

detL(z, φ, η) = detH(z, φ, η) detM(φ, η). (5.9)

Proposition 5.3.1
1. The poles of detH(z, φ, η) are the zeros of detM(φ, η),

2. The zeros of detL(z, φ, η) are the zeros of detH(z, φ, η).

Proof. It is clear that the zeros of detM(φ, η) are −α1(η), −α2(η), · · · ,−αN(η). For
i = 1, · · · , K̄ these zeros lie in the right half-plane Re(φ) > 0 and for i = K̄ + 1, · · · , N
they lie in the left half-plane Re(φ) < 0.

Since detL(z, φ, η) does not have any pole, it follows from (5.9) that the poles of
detH(z, φ, η) are the zeros of detM(φ, η). This proves part 1 of the proposition.

It also follows from (5.9) that the zeros of detL(z, φ, η) are the zeros of detH(z, φ, η) or
the zeros of detM(φ, η). Since from (5.6) and (5.7) we see that detH(z, φ, η) has exactly N
poles, then detL(z, φ, η) does not have any zero in common with detM(φ, η). This proves
part 2 of the proposition.

�

Based on the proposition, we consider the following lemma, which has been proven in [38].
We rewrite the proof of part 2 since some intermediate results in this proof will be used in
section 5.4 and thereafter.
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Lemma 5.3.1
With respect to φ,

1. for (z, η) 6= (1, 0), detL(z, φ, η) has K̄ zeros in the right half-plane Re(φ) > 0 and has
N − K̄ zeros in the left half-plane Re(φ) < 0, and detL(z, φ, η) 6= 0 on the imaginary
axis Re(φ) = 0.

2. detL(1, φ, 0) has K̄ − 1 zeros in the right half- plane Re(φ) > 0 and a simple zero at
φ = 0, and has N − K̄ zeros in the left half-plane Re(φ) < 0.

Proof. See [38] for the proof of part 1.
Let µ1(z, η), · · · , µK̄(z, η) be the zeros of detL(z, φ, η) in the right half-plane Re(φ) > 0,

and let µK̄+1(z, η), · · · , µN(z, η) be the zeros of detL(z, φ, η) in the left half-plane
Re(φ) < 0. We consider the situation for η = 0. Now,

L(z, φ, 0) = φI + (1 − z)(r−1Q + ααα) − r−1Q.

Define the matrix L∗(z, φ) as a matrix obtained from L(z, φ, 0) by adding all columns to
the first column so that

L∗
i1(z, φ) = φ + (1 − z)αi, i = 1, 2, . . . , N.

Since L∗
i1(1, 0) = 0, i = 1, 2, . . . , N, we have detL∗(1, 0) = detL(1, 0, 0) = 0. With the

implicit function theorem we can define the function µ(z) uniquely by µ(1) = 0 and

detL∗(z, µ(z)) = detL(z, µ(z), 0) = 0.

We consider this function for z close to 1, so

µ(z) = −(1 − z)µ′(1) + o(1 − z), z ↑ 1.

It follows that

L(z, µ(z), 0) = (1 − z)(ααα − µ′(1)I) − zr−1Q + o(1 − z), z ↑ 1

and
L∗

i1(z, µ(z)) = (1 − z)(αi − µ′(1)) + o(1 − z), z ↑ 1.

Since detL∗(z, µ(z)) = 0, we have

0 = lim
z↑1

1

1 − z
detL∗(z, µ(z)) = detLo,

where for i ∈ N , j ∈ N ,
Lo

ij = −r−1
i Qij,

and
L◦

i1 = αi − µ′(1). (5.10)
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Since detLo = 0 and πr(r−1Q) = 0, we have

N∑

i=1

πiriL
o
i1 = 0,

or with (5.10)

µ′(1) =
N∑

i=1

πiqi/
N∑

i=1

πiri = πq1/πr1

so that

µ(z) = −(1 − z)
πq1

πr1
+ o(1 − z), z ↑ 1. (5.11)

For z ↑ 1 one of the K̄ zeros of detL(z, µ(z), 0) in the right half-plane Re(φ) > 0 tends to
0 if and only if

∑N
i=1 πiri = πr1 < 0. The latter condition corresponds to traffic intensity

ρ < 1.
�

We next impose the following condition.

Condition 5.3.1
For (z, η) = (1, 0) and |z| ≤ 1, Re(η) > 0, −α1(η), . . . ,−αN(η) and µ1(z, η), . . . , µN(z, η)

are all distinct, possibly with the exception of a set of isolated points.

For i = 1, . . . , N let Ei(z, η) be a (non unique) nonzero column vector satisfying

L(z, µi(z, η), η)Ei(z, η) = 0, (5.12)

and let E(z, η) be the N ×N -matrix with ith column Ei(z, η). Let D(z, η) be the N × K̄-
matrix with elements

Dij(z, η) = Eij(z, η) + ηq−1
i Eij(z, η) + α−1

i Eij(z, η)µj(z, η), (5.13)

i ∈ N ; j ∈ R−; we then have

D(z, η) = (I + ηq−1)E(z, η)INK̄ + ααα−1E(z, η)INK̄diag(µ1(z, η), . . . , µK̄(z, η)).

From (5.8) it follows that for i ∈ R−,

H(z, µi(z, η), η)Di(z, η)

=ααα−1L(z, µi(z, η), η)αααM−1(µi(z, η), η)ααα−1(ααα(η) + µi(z, η)I)Ei(z, η)

=0.

(5.14)

The matrix D(z, η) we define here corrects the corresponding matrix in [38], which wrongly
does not satisfy (5.14).

Let S(z, η) be the K̄ × K̄-matrix with elements

Sij(z, η) = α−1
i Eij(z, η), i, j ∈ R−;
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so
S(z, η) = (IK̄Nααα−1INK̄)(IK̄NE(z, η)INK̄). (5.15)

We now impose the following condition.

Condition 5.3.2
For (z, η) = (1, 0) and 0 < |z| ≤ 1, Re(η) > 0, detS(z, η) 6= 0.

Define the K̄ × N -matrix C(z, η) by

C(z, η) = S−1(z, η)IK̄N .

Hence, from (5.15) we have

C(z, η) = (IK̄NE(z, η)INK̄)−1IK̄Nααα.

Notice that the last N−K̄ columns of C(z, η) are equal zero. Now, define the N×N -matrix
K(z, φ, η) by

K(z, φ, η) = I + D(z, η)diag

(
1

φ − µ1(z, η)
, . . . ,

1

φ − µK̄(z, η)

)
C(z, η). (5.16)

We now can prove the following factorization theorem.

Theorem 5.3.1
If Conditions 5.3.1 and 5.3.2 are satisfied, then for (|z| < 1, Re(η) ≥ 0) or (|z| ≤ 1,

Re(η) > 0),

1. detK(z, φ, η) =
∏K̄

i=1

(
φ+αi(η)

φ−µi(z,η)

)

2. for Re(φ) = 0
H(z, φ, η) = H+(z, φ, η)H−(z, φ, η)
where

(a) H−(z, φ, η) = K−1(z, φ, η),

(b) H+(z, φ, η) = H(z, φ, η)K(z, φ, η),

(c) H+(z, φ, η) is analytic for Re(φ) > 0, and continuous and bounded for
Re(φ) ≥ 0, and non-singular in Re(φ) > 0,

H−(z, φ, η) is analytic for Re(φ) < 0, and continuous and bounded for
Re(φ) ≤ 0, and non-singular in Re(φ) < 0.

Proof. Although we have different expressions for the matrices D(z, η), S(z, η) and
C(z, η), the proof is essentially the same as the proof of Theorem 4.2 in [38].

Now, by multiplying both sides of (5.3) by K(z, φ, η) and by using (5.6) we obtain
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Z(z, φ, η, v)H(z, φ, η)K(z, φ, η) = zZ0(φ, η, v)K(z, φ, η) + V(z, φ, η, v)K(z, φ, η), (5.17)

where from part 2.c of Theorem 5.3.1 we have that the left-hand side of (5.17) is analytic in
Re(φ) > 0 and bounded and continuous in Re(φ) ≥ 0, and the last term of the right-hand
side is analytic in Re(φ) < 0 and bounded and continuous in Re(φ) ≤ 0.

�

To obtain a standard Wiener-Hopf decomposition for (5.17) we decompose the first
term of the right-hand side of (5.17), i.e. we determine matrix functions K+ and K− such
that for Re(φ) = 0,

Z0(φ, η, v)K(z, φ, η) = K+(z, φ, η, v) + K−(z, φ, η, v) (5.18)

where

K+(z, φ, η, v) is analytic for Re(φ) > 0, and continuous and bounded for
Re(φ) ≥ 0,

K−(z, φ, η, v) is analytic for Re(φ) < 0, and continuous and bounded for
Re(φ) ≤ 0.

Lemma 5.3.2
If conditions 5.3.1 and 5.3.2 are satisfied then for Re(φ) ≥ 0,

K+
ij (z, φ, η, v)

= δijZ
0
i (φ, η, v) +

K̄∑

k=1

Dik(z, η)
Z0

i (φ, η, v) − Z0
i (µk(z, η), η, v)

φ − µk(z, η)
Ckj(z, η)

(5.19)

and

K−
ij (z, φ, η, v) =

K̄∑

k=1

Dik(z, η)
Z0

i (µk(z, η), η, v)

φ − µk(z, η)
Ckj(z, η) (5.20)

if (|z| < 1, Re(η) ≥ 0) or (|z| ≤ 1, Re(η) > 0).

Proof.

• For i = 1, 2, · · · , N and j = 1, 2, · · · , N, it is clear from (5.19) and (5.20) that

K−
ij (z, φ, η, v) + K+

ij (z, φ, η, v)

=δijZ
0
i (φ, η, v) +

K̄∑

k=1

Dik(z, η)
Z0

i (φ, η, v)

φ − µk(z, η)
Ckj(z, η)

so that, by using (5.16), (5.18) is satisfied.
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• Since by definition µk(z, η) for k = 1, 2, · · · , K̄ lies in the right half-plane Re(φ) > 0,
K−

ij (z, φ, η, v) is analytic for Re(φ) < 0, and continuous for Re(φ) ≤ 0, taking into
account the properties of C(z, η) and D(z, η). Furthermore, it is bounded on the left
half-plane Re(φ) ≤ 0 since for i = 1, 2, · · · , K̄, the functions

Dik(z, η)Z0
i (µk(z, η), η, v)Ckj(z, η)

and 1/(φ − µk(z, η)) are bounded.

• For i = 1, 2, · · · , N, j = 1, 2, · · · , N and l = 1, 2, · · · , K̄,

lim
φ→µl(z,η)

(φ − µl(z, η))K+
ij (z, φ, η, v)

= lim
φ→µl(z,η)

(φ − µl(z, η))δijZ
0
i (φ, η, v) +

[
lim

φ→µl(z,η)
(φ − µl(z, η))

K̄∑

k=1

Dik(z, η)
Z0

i (φ, η, v) − Z0
i (µk(z, η), η, v)

φ − µk(z, η)
Ckj(z, η)

]

=0,

consequently, K+
ij (z, φ, η, v) does not have any pole in the right half-plane Re(φ) > 0,

taking into account the properties of C(z, η) and D(z, η). We can conclude that
K+(z, φ, η, v) is analytic for Re(φ) > 0, and continuous for Re(φ) ≥ 0. Furthermore,
it is bounded in the right half-plane Re(φ) ≥ 0 since for i = 1, 2, · · · , N, the functions
Z0

i (φ, η, v), from (5.4), are bounded in the right half-plane Re(φ) ≥ 0.

�

Theorem 5.3.2
If conditions 5.3.1 and 5.3.2 are satisfied then for Re(φ) ≥ 0, with (|z| < 1, Re(η) ≥ 0)

or (|z| ≤ 1, Re(η) > 0),

Z(z, φ, η, v)H(z, φ, η)K(z, φ, η) = zK+(z, φ, η, v) + zK−(z, 0, η, v) (5.21)

Proof. From (5.17) and (5.18) we have for Re(φ) = 0

Z(z, φ, η, v)H(z, φ, η)K(z, φ, η) − zK+(z, φ, η, v)

=zK−(z, φ, η, v) + V(z, φ, η, v)K(z, φ, η)
(5.22)

where the left-hand side is analytic in Re(φ) > 0 and continuous in Re(φ) ≥ 0. Further-
more, by definitions of Z(z, φ, η, v) and K+(z, φ, η, v) and from part 2.c of Theorem 5.3.1,
it is bounded in Re(φ) ≥ 0. The right-hand side is analytic in Re(φ) < 0 and continuous in
Re(φ) ≤ 0. By definitions of V(z, φ, η, v), K(z, φ, η) and K−(z, φ, η, v), it is also bounded
in Re(φ) ≤ 0. Thus we can define an entire function which is equal to the left-hand side for
Re(φ) ≥ 0 and equal to the right-hand side for Re(φ) ≤ 0. This entire function is bounded,
and hence by Liouville’s theorem, it is a constant. Hence, for Re(φ) ≥ 0,

Z(z, φ, η, v)H(z, φ, η)K(z, φ, η) − zK+(z, φ, η, v)

= Z(z, 0, η, v)H(z, 0, η)K(z, 0, η) − zK+(z, 0, η, v).
(5.23)
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Using (5.22) with φ = 0 and noting that V(z, 0, η, v) = 0, it follows from (5.23) that

Z(z, φ, η, v)H(z, φ, η)K(z, φ, η) = zK+(z, φ, η, v) + zK−(z, 0, η, v).

This proves the theorem.

�

From (5.21) we can find an explicit expression for Z(z, φ, η, v) once we find the explicit
expressions for K(z, φ, η)−1 and H+(z, φ, η)−1, which are given in the following lemma.

Lemma 5.3.3
For (|z| < 1, Re(η) ≥ 0, Re(φ) ≥ 0) or (|z| ≤ 1, Re(η) > 0, Re(φ) ≥ 0) or

(|z| ≤ 1, Re(η) ≥ 0, Re(φ) > 0)

K−1(z, φ, η) = I − D(z, η)C(z, η)M−1(φ, η) (5.24)

and

H+(z, φ, η)−1 = [H(z, φ, η)K(z, φ, η)]−1

= [M(φ, η) − D(z, η)C(z, η)] α−1

N∑

i=1

Ei(z, η)Ei(z, η)−1

(φ − µi(z, η))
ααα.

(5.25)

Proof. See Appendix A.6.

The equation (5.21) and Lemma 5.3.3 will give us an explicit expression for Z(z, φ, η, v)
and we can use it to study the distribution of the buffer content.

5.4 The steady state buffer content at transition epochs

In this section we will derive the steady state distribution function of the buffer content
at transition epochs of the process {Jt} which exists for traffic intensity ρ < 1.

The process {(Wn, Xn)} is regenerative where for any i ∈ N the state (0, i) can be
seen as the regenerative state. Since Q is indecomposable, all states of the process {Jt}
communicate with each other. It follows that the return times of the process {(Wn, Xn)}
are aperiodic so that limn→∞ P{Wn ≤ x,Xn = j|X1 = i, V0 = v} for x ≥ 0 exists. If this
limit is zero then no limiting distribution exists, otherwise (Wn, Xn) converges weakly to
a stationary random vector (W,X). From (5.19) and (5.20) we see that
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lim
z↑1

(1 − z)K+
ij (z, φ, 0, v) + (1 − z)K−

ij (z, 0, 0, v)

= lim
z↑1

(1 − z)δijZ
0
i (φ, η, v) − lim

z↑1
(1 − z)

K̄∑

k=1

Dik(z, 0)
Z0

i (µk(z, 0), 0, v)

µk(z, 0)
Ckj(z, 0)

+ lim
z↑1

(1 − z)
K̄∑

k=1

Dik(z, 0)
Z0

i (φ, η, v) − Z0
i (µk(z, 0), η, v)

φ − µk(z, 0)
Ckj(z, 0)

= − Di1(1, 0)Z0
i (µ1(1, 0), 0, v) lim

z↑1

(1 − z)

µ1(z, 0)
C1j(1, 0)

= − Di1(1, 0) lim
z↑1

(1 − z)

µ1(z, 0)
C1j(1, 0).

(5.26)

Since H(1, 0, 0) = I − G(0, 0) = I − P and H(1, 0, 0)D1(1, 0) = 0, we may put

E1(1, 0) = D1(1, 0) = 1.

We also may put E−1
1 (1, 0) = (πππr1)−1πππr.

From the proof of Lemma 5.3.1 we have

lim
z↑1

(1 − z)

µ1(z, 0)
=

{ −πππr1
πππq1

, if πππr1 < 0;

0 , if πππr1 ≥ 0
(5.27)

Hence, if and only if πππr1 < 0, or ρ < 1, the vector {(Wn, Xn)} converges weakly to
(W,X). If Condition 5.3.1 and Condition 5.3.2 are satisfied we have

C1(1, 0) = (IK̄NE(1, 0)INK̄)−1
1 IK̄Nα

so C1i(1, 0) < 0, i ∈ R−; and C1i(1, 0) = 0, i ∈ R+. Denote µi = µi(1, 0), i ∈ N with µ1 = 0
and D = D(1, 0),C = C(1, 0) and E = E(1, 0); H(φ) = H(1, φ, 0), and K̃(φ) = K(1, φ, 0).
From (5.16) it follows that

K̃(φ) = I + Ddiag

(
0,

1

φ − µ2

, . . . ,
1

φ − µN

)
C.

Now let

H+(φ) =





H(φ)K̃(φ) + 1
φ
H(φ)D1C1, φ 6= 0,

H(0)K̃(0) + H′(0)D1C1, φ = 0,

(5.28)

and let Z(φ) be the N × N−dimensional matrix with elements

Zij(φ) = E
(
e−φW1 (X = j)|X1 = i

)

= lim
z↑1

(1 − z)Zij(z, φ, 0), j = 1, 2, . . . , N.
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From (5.21), (5.26), and (5.27) we now have for Re(φ) ≥ 0,

Z(φ)H+(φ) =
πrπrπr1

πqπqπq1
D1C1

=
πrπrπr1

πqπqπq1
U,

(5.29)

where U is an N×N−dimensional matrix with rows C1. The equation (5.29) confirms that
the steady-state distribution of the buffer content does not depend on the initial condition.

Let Zi(φ) be the N− dimensional row vector with components Zji(φ). From (5.29) and
(5.25) we have for Re(φ) ≥ 0,

Zi(φ) =
πrπrπr1

πqπqπq1
C1H

+(φ)−1

=
πrπrπr1

πqπqπq1
(IK̄NEINK̄)−1

1 IK̄Nααα ((ααα + φI) − DC)ααα−1

N∑

j=1

EjE−1
j

φ − µj

ααα.
(5.30)

The explicit expression for Zi(φ) can be obtain by using the following lemma.

Lemma 5.4.1
For (|z| < 1, Re(η) ≥ 0, Re(φ) ≥ 0) or (|z| ≤ 1, Re(η) > 0, Re(φ) ≥ 0) or

(|z| ≤ 1, Re(η) ≥ 0, Re(φ) > 0) and for i = 1, · · · , K̄,

Ci(z, η) [M(φ, η) − D(z, η)C(z, η)] = (φ − µi(z, η))Ci(z, η). (5.31)

Proof. See appendix A.7.
�

For z = 1 and η = 0, (5.31) yields

Ci [ααα + φI + φI − DC] = (φ − µi)Ci.

Then by using the orthogonality property of the vectors Ei, i ∈ N and our setting

E−1
1 (1, 0) = (πππr1)−1πππr

as is explained on page 114, (5.30) can be rewritten as in the following expression. For
Re(φ) ≥ 0,

Zi(φ) =
πrπrπr1

πqπqπq1
(φ − µ1)(IK̄NEINK̄)−1

1 IK̄N

N∑

j=1

EjE−1
j

φ − µj

ααα

=
πrπrπr1

πqπqπq1
φ(IK̄NEINK̄)−1

1 IK̄N

N∑

j=1

EjE−1
j

φ − µj

ααα

=
πrπrπr1

πqπqπq1


E−1

1 ααα + φ(IK̄NEINK̄)−1
1 IK̄N

N∑

j=K̄+1

EjE−1
j

φ − µj

ααα




= γγγ +
πrπrπr1

πqπqπq1
VVV

N∑

j=K̄+1

EjE−1
j ααα − πrπrπr1

πqπqπq1
VVV

N∑

j=K̄+1

−µj

φ − µj

EjE−1
j ααα,

(5.32)
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where

VVV = (IK̄NEINK̄)−1
1 IK̄N

and γγγ is given by (5.1). The equation (5.32) shows us that the steady-state distribution of
buffer content at transition epochs is a mixture of exponentials and a concentration at 0.
Let F(x) be the N -dimensional row vector with components

Fj(x) = P (W ≤ x,X = j), j ∈ N .

Then equation (5.32) yields

F(x) = γγγ +
πrπrπr1

πqπqπq1
VVV

N∑

j=K̄+1

EjE−1
j eµjxα. (5.33)

This result can also be found in [38].

5.5 The buffer content in continuous time

In this section we consider the buffer content in continuous time. In the first part we
will derive the steady state distribution function of this buffer content, and in the second
part we consider the time dependent distribution.

5.5.1 The steady state buffer content in continuous time

If Jt = j then

Vt = [WNt + rj(t − TNt)]
+

where Nt is the number of transitions of the process {Jt} during [0, t]. Consequently, for
Re(φ) ≥ 0,

E
(
e−φVt1(Jt = j)|X1 = i, V0 = v

)

= E
(
e−φ[W0+rj(t−T0)]+1 (T0 ≤ t < T1, Jt = j)|X1 = i, V0 = v

)

+
∞∑

n=1

E
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ t < Tn+1, Jt = j)|X1 = i, V0 = v

)
.

(5.34)
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The last term on the right can be written as

∞∑

n=1

E
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ t < Tn+1, Jt = j)|X1 = i, V0 = v

)

=
∞∑

n=1

N∑

l=1

E
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ t < Tn+1, Xn = l, Xn+1 = j)|X1 = i, V0 = v

)

=
∞∑

n=1

N∑

l=1

∫ t

0

P (An+1 > t − u,Xn+1 = j|Xn = l)

.duE
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ u,Xn = l)|X1 = i, V0 = v

)

=
∞∑

n=1

N∑

l=1

∫ t

0

Plje
−qj(t−u)

.duE
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ u,Xn = l)|X1 = i, V0 = v

)
.

(5.35)

From the identity (see page 269 of [17])

e−φx+

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξx, Re(φ) > Re(ξ) > 0,

where the path of integration is a line parallel to the imaginary axis, we have

E
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ u,Xn = l)|X1 = i, V0 = v

)

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξrjtE

(
e−ξWn+rjξTn1(Tn ≤ u,Xn = l)

|X1 = i, V0 = v) , Re(φ) > Re(ξ) > 0.

(5.36)

Combining (5.34), (5.35), and (5.36) yields for Re(η+qj +ξrj) > 0 and Re(φ) > Re(ξ) > 0,
∫ ∞

0

e−ηtE
(
e−φVt1(Jt = j)|X1 = i, V0 = v

)
dt

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξv

∫ ∞

0

e−(η+ξrj)tE (1(t < T1, Jt = j)|X1 = i, V0 = v) dt

+
∞∑

n=1

N∑

l=1

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ

∫ ∞

0

e−ηt

.

∫ t

0

Plje
−qj(t−u)e−ξrjtduE

(
e−ξWn+rjξTn1(Tn ≤ u,Xn = l)|X1 = i, V0 = v

)
dt

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξv δij

η + ξrj + qj

+
∞∑

n=1

N∑

l=1

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
E
(
e−ξWn−ηTn1(Xn = l)|X1 = i, V0 = v

)

.Plj(η + qj + ξrj)
−1.

(5.37)
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If Z∗(φ, η, v) is the N × N -dimensional matrix with elements

Z∗
ij(φ, η, v) =

∫ ∞

0

e−ηtE
(
e−φVt1(Jt = j)|X1 = i, V0 = v

)
dt, (5.38)

then, for Re(φ) > Re(ξ) > 0, Re(η) > 0, and maxj∈N Re(η + qj + ξrj) > 0 we have

Z∗(φ, η, v)

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ

(
Z(1, ξ, η, v)P + e−ξv

)
(ηI + ξr + q)−1.

(5.39)

From (5.7) and the fact that the matrix (ηI + ξr + q)−1 is diagonal, we can write for
Re(ξ) > 0, Re(η) > 0,

P(ηI + ξr + q)−1 = G(ξ, η)q−1.

Moreover, from (5.6) it follows for Re(ξ) > 0, Re(η) > 0,

P(ηI + ξr + q)−1 = q−1 − H(1, ξ, η)q−1.

Multiply both sides by Z(1, ξ, η, v), then by using (5.21) we have for Re(ξ) > 0, Re(η) > 0,

Z(1, ξ, η, v)P(ηI + ξr + q)−1

=Z(1, ξ, η, v)q−1 − Z(1, ξ, η, v)H(1, ξ, η)q−1

=Z(1, ξ, η, v)q−1 − K+(1, ξ, η, v)K−1(1, ξ, η)q−1 − K−(1, 0, η, v)K−1(1, ξ, η)q−1.

(5.40)

Notice that the inverse of the matrix K(1, ξ, η) for Re(ξ) > 0, Re(η) > 0 exists due to part
1 of Theorem 5.3.1. By using (5.18) we obtain from (5.40),

Z(1, ξ, η, v)P(ηI + ξr + q)−1

= Z(1, ξ, η, v)q−1 − Z0(ξ, η, v)K(1, ξ, η)K−1(1, ξ, η)q−1

+K−(1, ξ, η, v)K−1(1, ξ, η)q−1 − K−(1, 0, η, v)K−1(1, ξ, η)q−1

= Z(1, ξ, η, v)q−1 − Z0(ξ, η, v)q−1 + K−(1, ξ, η, v)K−1(1, ξ, η)q−1

−K−(1, 0, η, v)K−1(1, ξ, η)q−1, Re(ξ) > 0, Re(η) > 0.

Insertion into (5.39) yields for Re(φ) > 0, Re(η) > 0,

Z∗(φ, η, v) =
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ

(
Z(1, ξ, η, v)q−1 − Z0(ξ, η, v)q−1

)

+
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
K−(1, ξ, η, v)K−1(1, ξ, η)q−1

− 1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
K−(1, 0, η, v)K−1(1, ξ, η)q−1

+
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξv(ηI + ξr + q)−1.

(5.41)
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Since the elements of matrices Z(1, ξ, η, v) and Z0(ξ, η, v) satisfy A+(see page 11 for the
definitions of A+ and A−), then the first integral in the right hand-side of (5.41) can be
evaluated through the residue at ξ = φ. The elements of matrices

K−(1, ξ, η, v)K−1(1, ξ, η) and K−(1, 0, η, v)K−1(1, ξ, η)

satisfy A−, so we can evaluate the second and the third integral through the residue at φ =
0, and yields the same results. It follows that the second and the third integrals will cancel.
The last integral can be evaluated by using contour integration and Cauchy’s residue
theorem. We recall that the jth diagonal elements of the diagonal matrix (ηI + ξr + q)−1

has a pole at ξ = −(η + qj)/rj. For j ∈ R− this pole lies in the right half-plane Re(ξ) > 0,
and for j ∈ R+ this pole lies in the left half-plane Re(ξ) < 0. If we evaluate the integral

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξv(ηI + ξr + q)−1

through the residue in the right half-plane of the contour of integration, then we obtain
for Re(φ) ≥ 0, Re(η) ≥ 0,

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξv(ηI + ξr + q)−1 = r−1diag

(
Z1

1(φ, η, v), · · · , Z1
N(φ, η, v)

)
,

where

Z1
i (φ, η, v) =





(αi(η)e−φv + φeαi(η)v)/(αi(η)(φ + αi(η))), for i = 1, · · · , K̄,

e−φv/(φ + αi(η)), for i = K̄ + 1, · · · , N.

Let
Z1(φ, η, v) = diag

(
Z1

1(φ, η, v), · · · , Z1
N(φ, η, v)

)
.

From (5.4) it is clear that

r−1Z1(φ, η, v) = Z0(φ, η, v)q−1,

so that if we substitute the results of integrations in (5.41) we obtain for Re(φ) ≥ 0, Re(η) ≥
0,

Z∗(φ, η, v) = Z(1, φ, η, v)q−1. (5.42)

The process {(Vt, Jt), t ≥ 0} is regenerative, where the regeneration points are the
epochs at which the process enters a state (0, i) for some fixed i ∈ N . Since the times
between regeneration points are non-arithmetic,

lim
t→∞

E(exp(−φVt)1(Jt = i)|X1 = j, V0 = v)

exists, independent of initial conditions. Denote this limit by Z∗
i (φ) and let Z∗(φ) be

the N−dimensional row vector with components Z∗
i (φ). Similar to the proof given for the
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process {(Wn, Xn)}, we can conclude that {(Vt, Jt)} converges weakly to a random vector
(V, J) if and only if πrπrπr1 < 0.

To get the steady-state transform Z∗(φ), in the following we apply Abel’s theorem for
Laplace transforms (see Appendix). From (5.21), (5.20), and (5.19), we have for Re(φ) ≥ 0,

lim
η↓0

ηZ∗(φ, η, v) = lim
η↓0

ηZ(1, φ, η, v)q−1

= lim
η↓0

η
[
K+(1, φ, η, v) + K−(1, 0, η, v)

]
[H(1, φ, η)K(1, φ, η)]−1

= lim
η↓0

ηK−(1, 0, η, v) [H(1, φ, η)K(1, φ, η)]−1 .

(5.43)

From (5.25) it is clear that

lim
η↓0

[H(1, φ, η)K(1, φ, η)]−1 = H+(φ)−1,

where H+(φ) is defined in (5.28). To evaluate limη↓0 ηK−(1, 0, η, v) we first prove (the
proof can be done in a similar way as the proof of Lemma 5.3.1)

lim
η↓0

η

µ1(1, η)
=

{
−πrπrπr1 , if πrπrπr1 < 0,

0 , if πrπrπr1 ≥ 0.
(5.44)

Then, by our setting D1(1, 0) = E1(1, 0) = 1 as explained on page 114,

lim
η↓0

ηK−
ij(1, 0, η, v) = lim

η↓0
η

K̄∑

k=1

Dik(1, η)
Z0

i (µk(1, η), η, v)

−µk(1, η)
Ckj(1, η)

= lim
η↓0

η

−µ1(1, η)
Di1(1, η)Z0

i (µ1(1, η), η, v)C1j(1, η)

=

{
−πr1πr1πr1C1j , if πrπrπr1 < 0,

0 , if πrπrπr1 ≥ 0,

(5.45)

or

lim
η↓0

ηK−(1, 0, η, v) =

{
−πr1πr1πr1U , if πrπrπr1 < 0,

0 , if πrπrπr1 ≥ 0,
(5.46)

where U is the N × N -dimensional matrix with rows C1. It follows that

lim
η↓0

ηZ∗(φ, η, v) =

{
−πr1πr1πr1UH+(φ)−1 , if πrπrπr1 < 0,

0 , if πrπrπr1 ≥ 0,
(5.47)

which confirms that limt→∞ E(exp(−φVt)1(Jt = i)|X1 = j, V0 = v) does not depend on
the initial conditions. From (5.47) and (5.29) we can conclude that for Re(φ) ≥ 0,

Z∗(φ) = πqπqπq1Z(φ)q−1, (5.48)

which is again the Laplace-Stieltjes transform of a mixture of exponentials and a concen-
tration at 0.



5.5 The buffer content in continuous time 121

The distribution functions

F ∗
i (x) = P (V ≤ x, J = i), i ∈ N ,

can be obtained by inverting the entry in the i-th column of Z∗(φ), which yields

F ∗
i (x) =


πππ + πrπrπr1V

N∑

j=K̄+1

EjE−1
j eµjxr−1




i

. (5.49)

These results can also be found in [38].

5.5.2 Inversions for Time-dependent Buffer Content

In the previous subsection, we have derived the Laplace transform of the steady state
distribution of the buffer content. An explicit expression for the distribution has been
given by inverting the transform.

Now, we are interested in the distribution function of the buffer content at time t ≥ 0 for
an initial buffer content V0 = v, i.e. Fij(x, t, v), for i, j ∈ N . The double Laplace transform
of these distributions is defined in (5.38), where the expressions for these transforms is
given in matrix form by equation (5.42), that is for Re(φ) ≥ 0, Re(η) > 0,

Z∗(φ, η, v) =Z(1, φ, η, v)q−1

=(K+(1, φ, η, v) + K−(1, 0, η, v))[H(1, φ, η)K(1, φ, η)]−1q−1,
(5.50)

where the latter expression is obtained from Theorem 5.3.2. We will show below that
(5.50) holds for Re(φ) > 0 and Re(η) ≥ 0. We have to invert the transform in (5.50)
to get the distribution functions. From (5.50) we see that the expression for Z∗(φ, η, v)
involves the matrices K−(1, φ, η, v) and [H(1, φ, η)K(1, φ, η)]−1 which are rational in φ and
the irrational diagonal matrix Z0(φ, η, v) with its diagonal elements that can be rewritten
as

Z0
i (φ, η, v) =





(αiαi(η)e−φv + αiφeαi(η)v)/(αi(η)(φ + αi(η))), if ri < 0

e−φv/(φ + αi(η)), if ri > 0,

so that

Z0(φ, η, v)

=diag(
α1(η)e−φv + φeα1(η)v

α1(η)
, · · · ,

αK̄(η)e−φv + φeαK̄(η)v

αK̄(η)
, e−φv, · · · , e−φv)

.αααM(φ, η)−1

(5.51)

From (5.51) we see that the irrational property of the matrices Z0(φ, η, v) is caused by
the exponential factors e−φv. This allows us to just consider the rational parts of Z∗(φ, η, v)
in φ, and we can apply an analytic inversion of Z∗(φ, η, v) with respect to φ, since the
inversion of a term like e−φuf̃(φ) is f(x− u)H(x− u), where f(x) is the inverse of Laplace
transform f̃(φ) and H(x) is the Heaviside function.
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After the inversion with respect to φ, we get the Laplace-Stieltjes transform

∫ ∞

0

e−ηtdxFij(x, t, v)dt. (5.52)

Since we are interested in the distribution functions, we then derive the Laplace transform

ξij(x, η, v) =

∫ ∞

0

e−ηtFij(x, t, v)dt. (5.53)

The transform (5.53) in general is not a rational function in η. Hence, we invert (5.53)
numerically to get the desired distribution functions.

For brevity, we suppress the dependency of E(1, η) and µ̄i = µi(1, η), i ∈ N on the
variable η, and in the rest of this chapter we write Ē and µ̄i instead of E(1, η) and

µ̄i = µi(1, η), i ∈ N .

Let

Z̃0(φ, η,v)

=diag(
α1(η)e−φv + φeα1(η)v

α1(η)
, · · · ,

αK̄(η)e−φv + φeαK̄(η)v

αK̄(η)
, e−φv, · · · , e−φv).

(5.54)

Lemma 5.5.1
From (5.50), Lemma 5.3.3, (5.20), (5.19), and (5.54) we obtain for Re(φ) ≥ 0,

Re(η) > 0,

Z∗(φ, η, v) =Z̃0(φ, η,v)
N∑

l=1

ĒlĒ−1
l

(φ − µ̄l)
αααq−1

−
K̄∑

l=1

1

µ̄l

Z̃0(µ̄l, η,v)ĒlCl(1, η)q−1

−
K̄∑

l=1

1

µ̄l

Z̃0(µ̄l, η,v)ĒlCl(1, η)ααα−1

N∑

l1=1

µ̄l1Ē
l1Ē−1

l1

(φ − µ̄l1)
αααq−1.

(5.55)

Proof. See Appendix A.8.

�
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For k = 1, 2, . . . , K̄, by using the orthogonality property of the vectors Ēi, i ∈ N , we have

lim
φ→µ̄k

(φ − µ̄k)
K̄∑

l=1

1

µ̄l

Z̃0(µ̄k, η,v)ĒlCl(1, η)ααα−1

N∑

l1=1

µ̄l1Ē
l1Ē−1

l1

(φ − µ̄l1)
αααq−1

= lim
φ→µ̄k

(φ − µ̄k)
K̄∑

l=1

1

µ̄l

Z̃0(µ̄k, η,v)Ēl
[
(IK̄N ĒINK̄)−1

]
l
IK̄N

N∑

l1=1

µ̄l1Ē
l1Ē−1

l1

(φ − µ̄l1)
αααq−1

=Z̃0(µ̄k, η,v)ĒkĒ−1
k αααq−1

+ lim
φ→µ̄k

(φ − µ̄k)
K̄∑

l=1

1

µ̄l

Z̃0(µ̄l, η,v)Ēl
[
(IK̄N ĒINK̄)−1

]
l
IK̄N

N∑

l1=K̄+1

µ̄l1Ē
l1Ē−1

l1

(φ − µ̄l1)
αααq−1

=Z̃0(µ̄k, η,v)ĒkĒ−1
k αααq−1.

Now (5.55) yields for k = 1, 2, . . . , K̄,

lim
φ→µ̄k

(φ − µ̄k)Z
∗(φ, η, v) = 0,

or Z∗(φ, η, v) has no pole at µ̄k for k = 1, 2, . . . , K̄.

Inverting (5.55) with respect to the variable φ, we obtain the expression for ξij(x, η, v)
which is given in the following theorem.

Theorem 5.5.1
If conditions 5.3.1 and 5.3.2 are satisfied, then for i ∈ R−, Re(η) > 0,

ξij(x, η, v) = − 1

rj

N∑

l=1

(ĒlĒ−1
l )ij

µ̄l

(
1 − eµ̄l(x−v)

)
H(x − v)

+
1

rj

N∑

l=K̄+1

eαi(η)v

αi(η)
(ĒlĒ−1

l )ije
µ̄lx

− 1

rj

K̄∑

l=1

(ĒlĒ−1
l )ij

µ̄l

eµ̄l(x−v)

− 1

rj

N∑

l1=K̄+1

K̄∑

l=1

(
e−µ̄lv

µ̄l

+
eαi(η)v

αi(η)

)(
ĒlCl(1, η)ααα−1Ēl1Ē−1

l1

)
ij

eµ̄l1
x,

(5.56)
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and for i ∈ R+,

ξij(x, η, v) = − 1

rj

N∑

l=1

(ĒlĒ−1
l )ij

µ̄l

(
1 − eµ̄l(x−v)

)
H(x − v)

− 1

rj

K̄∑

l=1

(ĒlĒ−1
l )ij

µ̄l

eµ̄l(x−v)

− 1

rj

N∑

l1=K̄+1

K̄∑

l=1

e−µ̄lv

µ̄l

(
ĒlCl(1, η)ααα−1Ēl1Ē−1

l1

)
ij

eµ̄l1
x.

(5.57)

We can check that for all j = 1, 2, · · · , N, if we take the limit ηξij(x, η, v) for η ↓ 0,
then we get the steady-state distribution function F ∗

i (x) given by (5.49).
To get the distribution functions

Fij(x, t, v), i, j ∈ N ,

we invert the transforms (5.56) and (5.57) numerically, for which we use the algorithm in
[3].

5.5.3 Relaxation time for distribution of buffer content

In this subsection we study the relaxation time, a measure of the speed of convergence
of the time-dependent distribution to the steady-state distribution.

We refer to [14] for the definition of the relaxation time T (Fij(x, v)) of the function
Fij(x, v), as

T (Fij(x, v))

= inf{T : |P (Vt ≤ x, Jt = j|X1 = i, V0 = v) − P (V ≤ x, J = j)| = O(e−t/T )} (5.58)

for all x ≥ 0.
If T ∗ = T (Fij(x, v)) is the relaxation time of the function Fij(x, v) for fixed i, j, v, then

P (Vt ≤ x, Jt = j|X1 = i, V0 = v) − P (V ≤ x, J = j) = e−t/T ∗

g(t),

where g(t) = O(eεt)(t → ∞) for all ε > 0, i.e. g(t) is a function increasing slower than
exponential. The behavior of the function

P (Vt ≤ x, Jt = j|X1 = i, V0 = v) − P (V ≤ x, J = j)

for t → ∞ depends upon the singularities of the Laplace transform ξij(x, η, v) in the left
half-plane Re(η) < 0 (see page 238 of Doetsch[25], page 148–156 of Schouten[41], and page
40 of Widder[43]). In general, for t → ∞

P (Vt ≤ x, Jt = j|X1 = i, V0 = v) − P (V ≤ x, J = j) ≈ eath(t),
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where h(t) = O(eεt) for all ε > 0, and a is the real part of singular point of ξij(x, η, v)
which is closest to the imaginary axis. This means that T ∗ = −a−1.

From expressions (5.56) we see that the function ξij(x, η, v) for i ∈ R− has a pole at
η = −qi, for which αi(η) = 0, and some poles ηl, l ∈ N , for which µl(1, ηl) = 0. Moreover,
from (5.57), for i ∈ R+, the poles are ηl, l ∈ N , for which µl(1, ηl) = 0. It is readily verified
from the definition of L(z, φ, η) that in this case ηl for l ∈ N are exactly the eigenvalues
of the matrix Q.

The other possible singular points of ξij(x, η, v) are the branch points of µl(1, η). If η̄
is a branch point of ξij(x, η, v), then from (5.12),

det(µ(1, η̄)I + η̄r−1 − r−1Q) = 0, (5.59)

and
dµ(det(µ(1, η̄)I + η̄r−1 − r−1Q)) = 0. (5.60)

For some values of ri, i ∈ N , the singular point of ξij(x, η, v) which is closest to the
imaginary axis could be a branch point of µl(1, η), l ∈ N , and for other values of ri, i ∈ N ,
such a singular point could be the pole η = −qi. This means that the relaxation time
depends on the matrix Q and indeed also on the net input rates ri. This shows that the
conjecture in [42], which states that the relaxation time depends only on the generator Q,
is false. For an illustration, consider the following example.

Example 5.5.1

Consider a system in which the generator of the underlying Markov chain is

Q =

(
−q1 q1

q2 −q2

)
=

(
−4 4
5 −5

)
,

and the maximal output rate c = 1. The poles of the function ξij(x, η, v), which are also
the eigenvalues of the generator Q, are η = −q1 = −4 and η = −9, the latter is the only
non-zero eigenvelue of Q. The system of equations (5.59) and (5.60) gives us the branch
points

η̄1 =
−r1q2 + r2q1 + 2

√−r1r2q1q2

r1 − r2

and

η̄2 =
−r1q2 + r2q1 − 2

√−r1r2q1q2

r1 − r2

.

For r1 = −1.5, r2 = 0.975, these branch points are η̄1 = −8.976425 and η̄2 = −0.2357.
The singular point closest to the imaginary axis is the branch point η = −0.2357, so that
the relaxation time is 1

0.2357
.

One could think that the dependence of the relaxation time on the matrix Q and
the input rates ri can be converted to solely a dependence on the traffic intensity ρ. The
examples in section 5.6 show that for fixed Q, the relaxation time is decreasing when the
traffic intensity is decreasing. It turns out that this dependence can not be interpreted as a
simple dependence in the sense that the traffic intensity is the only variable that determines
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the value of the relaxation time, since for the same value of the traffic intensity the type
of the singular point can be different and yields different relaxation times as shown in the
following example.

Example 5.5.2

We consider two systems in which N = 2 and the generator of the underlying Markov
chain is

Q =

(
−q1 q1

q2 −q2

)
,

where the values of q1 and q2 for the systems are given in the table below. Both systems
have the same traffic intensity, ρ = 0.2857.

q1 q2 r1 r2 ρ

type of the
singlular point
closest to the
imaginary axis

relaxation
time

1.0 6.0 -1.0 1.0 0.2857 pole 1.0

0.5 1.0555 -2.0 2.0 0.2857 branch point 19.498

5.6 Algorithm and numerical results

In this section we give some examples of the probability distribution of the buffer
content in continuous time for the model in which the underlying Markov Chain is

Q =




−4 1 1 1 1
1 −5 2 0 2
3 3 −9 1 2
1 2 1 −8 4
3 2 1 0 −6




.

The linear system for the stationary probabilities πππQ = 0, πππ1 = 1 yields

π1 = 0.399,

π2 = 0.255,

π3 = 0.126,

π4 = 0.058,

π5 = 0.222.

We choose the input rates ci, i ∈ N and the maximal output rate c such that condition

N∑

i=1

πiri =
N∑

i=1

πi(ci − c) < 0

is satisfied. The traffic intensity is given by ρ =
∑N

i=1 πici/c.
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5.6.1 Algorithm

The steady-state distribution function of the buffer content is given explicitly by (5.49),
and the time-dependent distribution function of the buffer content

Fij(x, t, v) = P (Vt ≤ x, Jt = j|X1 = i, V0 = v)

for i ∈ R−, can be obtained by inverting (5.56) and (5.57)numerically.
In evaluating the functions(5.49), (5.56), and (5.57) in some points of z and η, first we

need to determine the matrix E(z, η) since all the functions mentioned above contain the
term Ei(z, η)Ei(z, η)−1 for some i = 1, 2, · · · , N. As discussed on page 109, Ei(z, η), the
ith column of matrix E(z, η), is a nonzero column vector satisfying

L(z, µi(z, η), η)Ei(z, η) = 0,

or, from (5.9), µi(z, η) and Ei(z, η) is an eigen vector of the matrix −ααα(η) + zααα + zr−1Q
which is associated to the eigen value µi(z, η). If condition 5.3.1 is fulfilled, the eigen space
of the eigen value µi(z, η) for i = 1, 2, · · · , N, has dimension one. This means that we
can choose any eigen vector associated with the eigen value µi(z, η) for the column vector
Ei(z, η), since the other eigen vectors are just the multiplication of Ei(z, η) with some
positive scalar. Choosing another eigen vector for Ei(z, η) will give us the same value of
Ei(z, η)Ei(z, η)−1.

The approximation value of Fij(x, t, v) in [3] is given by

Fij(x, t, v) ≈ eA/2

t

m∑

k=0

(
m

k

)
2−mSn+k(t), (5.61)

where

Sn(t) =
n∑

k=0

(−1)kak(t), (5.62)

and

a0(t) = ξij(x,A/2t, v)/2 (5.63)

ak(t) = Re(ξij(x, (A + 2kπi)/2t, v)), k ≥ 1. (5.64)

A,m, and n are the parameters to control the error bound. The setting of these parameters
values is discussed in [3]. As an illustration, to set the error bound of order 10−7 we can
choose A = 19.1,m = 11, and n = 15.

5.6.2 Results

We give some numerical inversion results for the time-dependent distribution function

Fij(x, t, v) = P (Vt ≤ x, Jt = j|X1 = i, v = v0)
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for the model described in the beginning of this section. The function values are calculated
from the approximation relation (5.61) with parameter values A = 19.1,m = 11, and
n = 15. We also calculate the relaxation time, which uses the analysis as discussed in
the subsection 5.5.3. Figures 5.1 to 5.4 show the time-dependent distribution function
F23(x, t, 0.5) for some values of the traffic intensity. We can see that the relaxation time is
increasing as the traffic intensity is increasing. This means that the speed of convergence
is decreasing as the traffic intensity is increasing.

Figure 5.1: r(1) = −0.35, r(2) = −0.25, r(3) = −0.3, r(4) = 0.3, r(5) = 0.1, v = 0.5,
ρ = 0.097526, the relaxation time = 1

0.5
= 2.0

Figures 5.5 to 5.7 show the time-dependent distribution function F12(x, t, v) for some
values of the initial buffer content v. The relaxation time for all distribution functions in
figures 5.5 to 5.7 is the same, i.e. 17.857. But figures 5.5 to 5.7 show us that the speed of
convergence also depends on the initial buffer content.
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Figure 5.2: r(1) = −0.25, r(2) = −0.15, r(3) = −0.2, r(4) = 0.4, r(5) = 0.2, v = 0.5,
ρ = 0.195052, the relaxation time = 1

0.26
= 3.846

Figure 5.3: r(1) = −0.20, r(2) = −0.125, r(3) = −0.15, r(4) = 0.45, r(5) = 0.25, v = 0.5,
ρ = 0.2625, the relaxation time = 1

0.056
= 17.857
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Figure 5.4: r(1) = −0.198, r(2) = −0.098, r(3) = −0.148, r(4) = 0.452, r(5) = 0.252,
v = 0.5, ρ = 0.9406358, the relaxation time = 1

0.035
= 28.571

Figure 5.5: P (Vt ≤ x, Jt = 2|X1 = 1, V0 = 0), ρ = 0.2625, r(1) = −0.20, r(2) =
−0.125, r(3) = −0.15, r(4) = 0.45, r(5) = 0.25, the relaxation time = 1

0.056
= 17.857
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Figure 5.6: P (Vt ≤ x, Jt = 2|X1 = 1, V0 = 0.255208333), ρ = 0.2625 r(1) = −0.20, r(2) =
−0.125, r(3) = −0.15, r(4) = 0.45, r(5) = 025, the relaxation time = 1

0.056
= 17.857

Figure 5.7: P (Vt ≤ x, Jt = 2|X1 = 1, V0 = 1.0), ρ = 0.2625 r(1) = −0.20, r(2) =
−0.125, r(3) = −0.15, r(4) = 0.45, r(5) = 025, the relaxation time = 1

0.056
= 17.857





Chapter 6

Semi - Markovian Fluid Flow Model

6.1 Introduction

In this chapter we study a generalization of the model considered in chapter 5. Let
{(An, Xn), n ≥ 0} be a Markov renewal sequence with the property that for n = 1, 2, · · · ,

P (An+1 ≤ x,Xn+1 = j|A1, · · · , An, X1, · · · , Xn−1, Xn = i)

=P (An+1 ≤ x,Xn+1 = j|Xn = i),

in which the latter conditional probability does not depend on n and will be denoted as
Hij(x). Let Tn =

∑n
i=1 Ai, for n = 1, 2, · · · , T0 = 0, and for t ≥ 0, let

Nt = sup{n|Tn ≤ t}.

Now, consider the semi-Markov process {Jt, t ≥ 0} where

Jt = XNt+1.

We see that at Tn the process {Jt, t ≥ 0} jumps from one state to the next state and
Xn = JT−

n
.

The structure of the fluid flow model we study in this chapter is similar to the structure
of the model in chapter 5. Let N = {1, 2, . . . , N} be the state space of the Markov chain
{Xn, n ≥ 0}. We assume that this process is irreducible and aperiodic. The slope {at} of
the input process is constant between transitions of {Jt} and is equal to ci when {Jt} is in
state i. The input flows into an infinite buffer that has maximal output rate c, and initially
has a content v. It follows that the rate of the net input process is also constant between
transitions of {Jt}, and is equal to ri = ci − c. We define the buffer content at time t as Vt,
with the assumption that V0 = v > 0. Let Wn = VTn , n = 0, 1, . . . . It is clear that W0 = v.

Let Hj, j ∈ N be the time the process {Jt} spends in state j before making a transition
into a different state. In this chapter we assume that for j ∈ N , Hj is hyper-exponentially
distributed or hypo-exponentially distributed(see Riska[39]). In other words, for j ∈ N , Hj

is a mixture of m exponential distributions or the distribution of the sum of m independent
exponentially distributed random veriables, m ≥ 2. Let M = {1, 2, · · · ,m}. It follows that

133
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for i, j ∈ N , n = 1, 2, · · · , the Laplace-Stieltjes transform

Hij(φ) =

∫ ∞

0

e−φxdHij(x)

=

∫ ∞

0

e−φxdP{An+1 ≤ x|Xn = i,Xn+1 = j}P{Xn+1 = j|Xn = i},

can be expressed as

Hij(φ) = Pij
hj(φ)∏m

k=1(φ + µjk)

= Pij

∑m
k=1 ajkµjk

∏m
l=1,l 6=k(φ + µjl)∏m

k=1(φ + µjk)
, j 6= i,

(6.1)

where for i, j ∈ N , k ∈ M, the constants Pij, µjk and ajk are described as follows.

• Pij is the transition probability Pij = P{Xn+1 = j|Xn = i},

• µjk > 0 are assumed to be distinct,

• Case 1 For j ∈ N , Hj is hyper-exponentially distributed. Then the constants
ajk > 0 do not have to be dependent on µjk, and satisfy

∑m
k=1 ajk = 1.

Case 2 For j ∈ N , Hj is hypo-exponentially distributed. Then

ajk =
m∏

l=1, l 6=k

µjl

(−µjk + µjl)
. (6.2)

Notice that for this case, the function hj(φ) can be written in the simpler form

hj(φ) =
m∏

k=1

µjk. (6.3)

Our assumption in (6.1) is a generalization of the corresponding Laplace-Stieltjes trans-
form in chapter 5 which has the form

Hij(φ) =

{
Qij

qi

qj

φ+qj
, i 6= j,

0 , i = j,

where Qij is the (i, j)th element of the infinitesimal generator of the process {Jt, t ≥ 0},
and qi = −Qii.

With the assumption on Hij(φ) above, the symbol of Wiener-Hopf-type equations is
still a rational matrix in φ, and each element of this matrix has only simple poles. With
this property, this matrix can be factorized by the Wiener-Hopf factorization technique as
we apply in chapter 5. For more general models in which the times between transitions are
not hyper-exponential or hypo-exponential, but Hij(φ) is still a rational function of φ, the



6.1 Introduction 135

Wiener-Hopf factorization technique still can be used to solve the problem. If the symbol
of Wiener-Hopf-type equations has some poles of order more than one, the construction of
factors of the symbol will be different from what we did in section 5.3 and it needs a more
complicated analysis.

We are interested in the probability distribution of the buffer content in steady state
as well as in the time-dependent case, in which the distribution functions at time t ≥ 0 are
denoted by

Fij(x, t, v) = P (Vt ≤ x, Jt = j|X1 = i, V0 = v), i, j ∈ N .

Although most fluid flow models studied so far have a Markovian underlying process,
Kulkarni[32] has suggested an analysis of the semi-Markovian fluid flow models. It is
assumed that the analysis is going to be rather hard, and indeed, most papers that study the
semi-Markovian fluid flow models, i.e. Kella and Whitt[29], Gautam et al.[27], Asmussen[8],
Boxma et al.[15], and Latouche and Takine[34], focus the analysis on special cases of the
models.

The steady-state distribution of the buffer content of the present semi-Markovian fluid
flow model is studied in [27]. The upper and lower bounds for the steady-state distribution
are derived, and discussion on some examples and applications in telecommunication net-
works can be found in this paper. In [34], the study is focused on the semi-Markovian fluid
flow model in which the intervals during which the input rate is negative(positive) have
an exponential distribution. The structure of the steady-state buffer content distribution
is studied by applying the Markov-renewal approach developed earlier in the context of
quasi-birth-and-death processes and of Markovian fluid queues. In [15], a model is studied
in which the underlying semi-Markov process has three states where at least one of the
periods in a state has a general distribution and the others have exponential distributions.
The distribution of the buffer content, the distribution of the busy period and the distri-
bution of the maximal buffer content during a busy period, in steady-state, are obtained
by establishing relations between the fluid flow models and ordinary queues with instanta-
neous input, and by using level crossing theory. The approach is an extension of the one in
[29], which only uses the relations between the fluid flow models and ordinary queues with
instantaneous input. A more general model, in which the period the underlying process
{Ji} spends in a state has a general phase-type distribution, is studied in [8]. In the latter
paper the steady-state distribution of the buffer content is derived.

As in chapter 5, in section 6.2 we consider the process {(Wn, Tn, Xn)} and derive Wiener-
Hopf type equations for the transform of the joint distribution of {(Wn, Tn, Xn)}. The
system of equations we obtain for the present model is similar to the system in chapter
5. The only difference is that the expression for its symbol is a more general rational
function, since now we are dealing with a more general transform Hij(φ) . In section
6.3 we solve this system of equations with Wiener-Hopf factorization, which based on the
minimal representation of polynomial matrices (see Gohberg et al [28] for the explanation of
the minimal representation) . By using the characteristic of the minimal representation, we
obtain an explicit expression for the transform of {(Wn, Tn, Xn)}. The double transform of
the buffer content in continuous time can be derived from the transform of {(Wn, Tn, Xn)},
and this double transform with respect to one transform variable is a closed form, so that
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we can invert it analytically to obtain the Laplace-Stieljes transform of the buffer content in
continuous time, as we do in section 6.4. To obtain the time-dependent distribution of the
buffer content in continuous time, we invert its Laplace-Stieltjes transform numerically.
The steady-state distribution can be obtained by applying Abel’s limit theorem to the
transform. We show that the steady-state distribution function has a similar structure as
for the Markovian case we studied in chapter 5.

We implement the numerical inversion algorithm given in [3] to get the time-dependent
distribution functions, and the results can be found in section 6.6. The behavior of the time-
dependent distributions we obtained from the numerical inversion confirms our conjecture
in chapter 5, that the speed of convergence of the time-dependent distributions to the
steady-state distribution depends on the transition matrix P, the distribution of Hj, j ∈ N ,
the initial buffer content v, and the net input rates ri, i ∈ N .

We will use the following notations: x+ = max(0, x), and x− = min(0, x). 1 is the
indicator function, 1 is the N -dimensional column vector with all components equal to 1,
1i is the K̄-dimensional column vector with i-th component 1 and all other component
equal to 0, where K̄ is an integer defined in section 5.2. I is the identity matrix, Ikl is
the k × l-matrix with elements δij, where δij is Kronecker’s delta, i.e., δij = 0, for i 6= j,
and δjj = 1. If A is an N × N -dimensional matrix, the i-th column of A is denoted by
Ai, and the i-th row of A is denoted by Ai. If A(i), i = 1, · · · ,m are N × N -dimensional
matrices with elements A(i)jk, we denote by

∑m
i=1 A(i) the N × N -dimensional matrix

with elements
∑m

i=1 A(i)jk, and we denote by
∏m

i=1 A(i) the N × N -dimensional matrix
where the (j, k)th element is given by the multiplication of A(i)jk for i = 1, 2, · · · ,m.

6.2 System of Wiener-Hopf type equations

Let P be the transition probability matrix of the Markov chain{Xn} with elements
Pij. We assume that the Markov chain {Xn} is irreducible and positive recurrent. The
stationary probabilities limn→∞ P (Xn = i) are denoted by pi, i ∈ N , and p denotes the N -
dimensional row vector with components pi. From (6.1) we see that the times between tran-
sitions of {Jt} are non-arithmetic so that limt→∞ P (Jt = i), i ∈ N exists. The stationary
probabilities limt→∞ P (Jt = i) are denoted by πi, i ∈ N and πππ denotes the N -dimensional
row vector with components πi.

We assume that
∑N

i=1 πiri < 0 to ensure stability. The traffic intensity ρ, i.e. the ratio

of the average input rate and the maximal output rate , is ρ =
∑N

i=1 πici/c.

We assume that for i ∈ N , ci 6= c so that ri 6= 0 for i ∈ N . Let

R− = {i|ri < 0, i = 1, . . . , N} and R+ = {i|ri > 0, i = 1, . . . , N}.

Let |R−| = K̄. This implies that |R+| = N − K̄. Let r = diag(r1, . . . , rN). Without loss of
generality, suppose that R− = {1, 2, . . . , K̄}.

Define for Re(η) ≥ 0, Re(φ) ≥ 0, v ≥ 0,

Z0
i (φ, η, v) = E

(
e−φW1−ηT11 (X1 = i)|X1 = i, V0 = v

)
, (6.4)
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and define for (|z| < 1, Re(η) ≥ 0, Re(φ) ≥ 0) or (|z| ≤ 1, Re(η) > 0, Re(φ) ≥ 0) or
(|z| ≤ 1, Re(η) ≥ 0, Re(φ) > 0)

Zij(z, φ, η, v) =
∞∑

n=1

znE
(
e−φWn−ηTn1 (Xn = j)|X1 = i, V0 = v

)
.

Define for Re(φ) ≤ 0,

Vij(z, φ, η, v) =
∞∑

n=1

zn+1E
((

1 − e−φ[Wn+Rn+1An+1]−
)

e−η(Tn+An+1)1 (Xn = j)|X1 = i, V0 = v
)
,

and for Re(φ) = 0,

Gij(φ, η) = E
(
e−(rjφ+η)An+11 (Xn+1 = j)|Xn = i

)
.

Let Z(z, φ, η, v),V(z, φ, η, v) and G(φ, η) be N × N -matrices with elements Zij(z, φ, η, v),
Vij(z, φ, η, v) and Gij(φ, η) respectively.

The assumption given in equation (6.1) yields

Gij(φ, η) = Pij
hj(φrj + η)∏m

k=1(φrj + η + µjk)
= Pij

m∑

k=1

ajkµjk

(φrj + η + µjk)
,

where the constants ajk satisfy the conditions explained on page 134. We then obtain the
following system of Wiener-Hopf-type equations in matrix notation.

Theorem 6.2.1
For Re(φ) = 0 and (|z| ≤ 1, Re(η) > 0) or (|z| < 1, Re(η) ≥ 0) we have

Z(z, φ, η, v)(I − zG(φ, η)) = zZ0(φ, η, v) + V(z, φ, η, v), (6.5)

where
Z0(φ, η, v) = diag(Z0

1(φ, η, v), Z0
2(φ, η, v), . . . , Z0

N(φ, η, v)),

with

Z0
i (φ, η, v) =





e−φv hi(φri + η)∏m
k=1(φri + η + µik)

, if ri > 0,

m∑

k=1

aikµik

[
e−φv − e(η+µik)v/ri

(φri + η + µik)
+

e(η+µik)v/ri

(η + µik)

]
, if ri < 0.

(6.6)

Proof. For the proof of (6.5), see the proof of Theorem 5.2.1. To get the expression for
Z0

i (φ, η, v), we recall that

Z0
i (φ, η, v) = E

(
e−φW1−ηT11(X1 = i)|X1 = i, V0 = v

)

=

∫ ∞

0

E
(
e−φ[v+riT1]+−ηT1|T1 = u

)
dP{T1 ≤ u|X1 = i}.
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Since T1 = A1, it follows from our assumption in (6.1) that for ri < 0 and v ≥ 0,

Z0
i (φ, η, v) =

∫ −v/ri

0

E
(
e−φv−(φri+η)T1|T1 = u

)
dP{A1 ≤ u|X1 = i}

+

∫ ∞

−v/ri

E
(
e−ηT1|T1 = u

)
dP{A1 ≤ u|X1 = i}

=
m∑

k=1

aikµik

[
e−φv − e(η+µik)v/ri

]

(φri + η + µik)

+
m∑

k=1

aikµik
e(η+µik)v/ri

(η + µik)
,

and for ri > 0 and v ≥ 0,

Z0
i (φ, η, v) =

∫ ∞

0

E
(
e−φv−(φri+η)T1|T1 = u

)
dP{A1 ≤ u|X1 = i}

= e−φv hi(φri + η)∏m
k=1(φri + η + µik)

.

�

The system in Theorem 6.2.1 will be solved by the Wiener-Hopf factorization method.

6.3 Solution of the system of Wiener-Hopf equations

The system (6.5) can be solved by factorizing the symbol

H(z, φ, η) = I − zG(φ, η), (6.7)

i.e. for Re(φ) = 0,

H(z, φ, η) = H+(z, φ, η)H−(z, φ, η)

where

H+(z, φ, η) is analytic for Re(φ) > 0, and continuous and bounded for
Re(φ) ≥ 0, and non-singular in Re(φ) > 0.

H−(z, φ, η) is analytic for Re(φ) < 0, and continuous and bounded for
Re(φ) ≤ 0, and non-singular in Re(φ) < 0.

To find H+(z, φ, η) and H−(z, φ, η) first we consider the following. Let

r = diag(r1, r2, · · · , rN).
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We then can write the matrix G(φ, η) as

G(φ, η) = Ph(φ, η)(µµµ1 + φr + ηI)−1(µµµ2 + φr + ηI)−1 · · · (µµµm + φr + ηI)−1, (6.8)

where
h(φ, η) = diag(h1(φr1 + η), · · · , hN(φrN + η)), (6.9)

with hj(φ) defined on page 134, and µµµi = diag(µ1i, µ2i, · · · , µNi), i ∈ M.
Let

αij(η) = (η + µij)/ri, i ∈ N , j ∈ M,

and let
αij = αij(0), i ∈ N , j ∈ M.

Define N × N -dimensional matrices

αααi(η) = diag(α1i(η), . . . , αNi(η)), i ∈ M,

αααi = diag(α1i, . . . , αNi), i ∈ M,

M(φ, η) = (ααα1(η) + φI)(ααα2(η) + φI) · · · (αααm(η) + φI), (6.10)

L(z, φ, η) = M(φ, η) − zPr−mh(φ, η), (6.11)

where rm = rr · · · r︸ ︷︷ ︸
m

and r−m = (rm)−1. It follows that

H(z, φ, η) = L(z, φ, η)M−1(φ, η). (6.12)

Furthermore,
detL(z, φ, η) = detH(z, φ, η) detM(φ, η). (6.13)

Proposition 6.3.1
1. The poles of detH(z, φ, η) are the zeros of detM(φ, η),

2. The zeros of detL(z, φ, η) are the zeros of detH(z, φ, η).

Proof. It is clear that detM(φ, η) has Nm zeros, i.c. −α11(η), · · · ,−α1m(η), −α21(η), · · · ,
−α2m(η), · · · , −αN1, . . . ,−αNm(η). Since by definition ri < 0, 1 ≤ i ≤ K̄, the first K̄m
of these lie in the right half-plane Re(φ) > 0 and the (N − K̄)m others lie in the left
half-plane Re(φ) < 0.

From (6.7), (6.9), (6.1), and (6.8) we see that detH(z, φ, η) has exactly Nm poles.
Since detL(z, φ, η) does not have any pole, it follows from (6.13) that the Nm poles of
detH(z, φ, η) are the zeros of detM(φ, η). This proves part 1 of the proposition.

It also follows from (6.13) that the zeros of detL(z, φ, η) are the zeros of detH(z, φ, η)
or the zeros of detM(φ, η). We then can conclude that detL(z, φ, η) does not have any
zero in common with detM(φ, η). This proves part 2 of the proposition.

�

Based on the proposition, we consider the following lemmas.
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Lemma 6.3.1
With respect to φ, for (|z| ≤ 1, Re(η) > 0) or (|z| < 1, Re(η) ≥ 0) , detL(z, φ, η) has

K̄m zeros in the right half- plane Re(φ) > 0 and has (N − K̄)m zeros in the left half-plane
Re(φ) < 0.

Proof. We first study the characteristics of zeros and poles of detH(z, φ, η). Notice that
the (i, j)th element of zG(φ, η) is given by

zPij

m∑

k=1

ajk
µjk

(φrj + η + µjk)
,

so that (|z| ≤ 1, Re(η) > 0) or (|z| < 1, Re(η) ≥ 0) ,

N∑

j=1

|zG(φ, η)ij| =
N∑

j=1

|z|Pij

∣∣∣∣∣

m∑

k=1

ajk
µjk

φrj + η + µjk

∣∣∣∣∣. (6.14)

We then consider the following cases, that follows from our assumption on the time the
process {Jt} spends in a state before making a transition into a different state.

Case 1 For j ∈ N , Hj is hyper-exponentially distributed. On Re(φ) = 0, with
(|z| ≤ 1, Re(η) > 0) or (|z| < 1, Re(η) ≥ 0) , it is clear that for j ∈ N , k ∈ M,

∣∣∣∣
µjk

φrj + η + µjk

∣∣∣∣ < 1. (6.15)

Let d0 = (|η| + 2 max
j∈N ,k∈M

|µjk|)/ min
j∈N

|rj|. Then on |φ| = d with d > d0, the inequality

(6.15) is also satisfied. Since
∑m

k=1 ajk = 1, it follows that on C+
0,d(C

−
0,d),

N∑

j=1

|zG(φ, η)ij| =
N∑

j=1

|z|Pij

m∑

k=1

ajk

∣∣∣∣
µjk

φrj + η + µjk

∣∣∣∣

<
N∑

j=1

Pij

m∑

k=1

ajk

= 1.

Due to Theorem A.4.2 (generalization of Rouché’s theorem) it follows that on C+
0,d(C

−
0,d),

the number of zeros and the number of poles inside C+
0,d (C−

0,d) of detH(z, φ, η) are
the same. From part 1 of Proposition 6.3.1 we can conclude that detH(z, φ, η) has
K̄m poles in the right half- plane Re(φ) > 0 and has (N − K̄)m poles in the left
half-plane Re(φ) < 0. It follows that detH(z, φ, η) has K̄m zeros in the right half-
plane Re(φ) > 0 and has (N − K̄)m zeros in the left half-plane Re(φ) < 0. The
Lemma for case 1 then can be proven by using part 2 of Proposition 6.3.1.
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Case 2 For j ∈ N , Hj is hypo-exponentially distributed. For this case, we use
the expression for hj(φ, η) given by (6.3), that is

hj(φ, η) =
m∏

k=1

µjk.

On Re(φ) = 0, with (|z| ≤ 1, Re(η) > 0) or (|z| < 1, Re(η) ≥ 0) , it is clear that for
j ∈ N , k ∈ M, ∣∣∣∣∣

m∏

k=1

µjk

(φrj + η + µjk)

∣∣∣∣∣ < 1. (6.16)

Let d0 = (|η| + 2 max
j∈N ,k∈M

|µjk|)/ min
j∈N

|rj|. Then on |φ| = d with d > d0, the inequality

(6.16) is also satisfied so that on C+
0,d(C

−
0,d),

N∑

j=1

|zG(φ, η)ij| =
N∑

j=1

|z|Pij

∣∣∣∣∣

m∏

k=1

µjk

(φrj + η + µjk)

∣∣∣∣∣

<
N∑

j=1

Pij

= 1.

Case 2 of the lemma now follows by using the same argument as in the proof of
Case 1.

�

Let γi(z, η), i = 1, · · · , K̄m be the zeros of detL(z, φ, η) in the right half-plane
Re(φ) > 0 and let γi(z, η), i = K̄m + 1, · · · , Nm be the zeros in the left half-plane
Re(φ) < 0. The following lemma concerns the behavior of the zeros of detL(z, φ, 0) as
z ↑ 1.

Lemma 6.3.2
For z ↑ 1 one of the K̄m zeros of detL(z, φ, 0) in the right half-plane Re(φ) > 0 tends

to 0 if and only if
∑N

i=1 πiri = πr1 < 0.

Proof. Let γ1(z, 0) be a zero of detL(z, φ, 0). Then by Proposition 6.3.1 we also have
detH(z, γ1(z, 0), 0) = 0. Let, moreover, v(z) be a non-zero column vector with elements
v1(z), · · · , vN(z), satisfying H(z, γ1(z, 0), 0)v(z) = 0. Since G(0, 0) = P, it follows that
detH(1, 0, 0) = 0. So we may choose γ1(z, 0) such that γ1(1, 0) = 0, and since

H(1, 0, 0)1 = 0

we may assume that v(1) = 1. Noting that P is irreducible it follows that detH(1, φ, 0)
has a simple zero at φ = 0. Consequently, the function γ1(z, 0) can not have a branch point
at z = 1 and, therefore, is differentiable at z = 1.
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From H(z, γ1(z, 0), 0)v(z) = 0 we have for i = 1, 2, · · · , N,

N∑

j=1

(δij − zGij(γ1(z, 0), 0))vj(z) = 0.

Differentiating this equation and letting z tend to 1 yields

dvi(z)

dz

∣∣∣
z=1

−
N∑

j=1

Pij
dvj(z)

dz

∣∣∣
z=1

−
N∑

j=1

Pijvj(1)

[
1 − rj

m∑

k=1

ajk

µjk

dγ1(z, 0)

dz

∣∣∣
z=1

]

= 0.

With our assumption v(1) = 1, this can be written as

dvi(z)

dz

∣∣∣
z=1

−
N∑

j=1

Pij
dvj(z)

dz

∣∣∣
z=1

−
N∑

j=1

Pij +
N∑

j=1

Pijrj

m∑

k=1

ajk

µjk

dγ1(z, 0)

dz

∣∣∣
z=1

= 0.

Multiplying this equation with pi, where {pi} is the stationary distribution of P, and
summing over all i we get

dγ1(z, 0)

dz

∣∣∣
z=1

=
1

N∑

j=1

pjrj

m∑

k=1

ajk

µjk

.

Noting that

πj =

pj

m∑

k=1

ajk

µjk

N∑

i=1

pi

m∑

k=1

aik

µik

,

we can now write for z ↑ 1,

γ1(z, 0) = −(1 − z)
dγ1(z, 0)

dz

∣∣∣
z=1

+ o(1 − z),

= −(1 − z)

(
N∑

j=1

πjrj

)(
N∑

j=1

pj

m∑

k=1

ajk

µjk

)
+ o(1 − z).

This zero lies in the right half-plane Re(φ) > 0 and tends to the origin if and only if∑N
j=1 πjrj < 1. �

We next impose the following condition.

Condition 6.3.1
For Re(η) ≥ 0, −α11(η), . . . ,−αNm(η) and γ1(z, η), . . . , γNm(z, η) are all distinct.
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Similar to Condition 5.3.1, Condition 6.3.1 is needed to obtain the canonical factoriza-
tion of H(z, φ, η). To find the factors, we first define some index sets.

A = {1, 2, · · · , N} × {1, 2, · · · ,m},

B = {1, 2, · · · , Nm},
and

Rm− = {1, 2, · · · , K̄m}.
We define a map tm from B to A

tm : l 7−→
(⌊

l − 1

m

⌋
+ 1, l − m

⌊
l − 1

m

⌋)
,

where bac denotes the largest integer less or equal to a. This map defines a one to one
correspondence from B to A, with inverse t−1

m : (i, j) → m(i − 1) + j. Notice that this
inverse gives an enumeration of the set A. We also define the map

tK̄ : l 7−→
⌊

l − 1

K̄

⌋
+ 1,

which defines a function from Rm− to {1, 2, · · · ,m}. We will use this function to divide
Rm− into m sets with cardinality K̄.

For i ∈ B, let Ei(z, η) be a non-unique nonzero column vector satisfying

L(z, γi(z, η), η)Ei(z, η) = 0, (6.17)

and let E(z, η) be the N × Nm-matrix with ith column is Ei(z, η).

For |z| ≤ 1, Re(η) ≥ 0, let D(z, η) be the N × K̄m-matrix with elements

Dij(z, η)

=(αi1(η) + γj(z, η))(αi2(η) + γj(z, η)) · · · (αim(η) + γj(z, η))Eij(z, η),

i ∈ N ; j ∈ Rm−. The ith column of matrix D(z, η) satisfies

Di(z, η) = M(γi(z, η), η)Ei(z, η). (6.18)

It follows that for i ∈ Rm−,

H(z, γi(z, η), η)Di(z, η) = L(z, γi(z, η), η)M−1(γi(z, η), η)M(γi(z, η), η)Ei(z, η)

= 0.
(6.19)

For i ∈ N , |z| ≤ 1, Re(η) ≥ 0, define the K̄ × K̄m-matrix iS(z, η) with elements

iSjk(z, η) =
m∏

l=1,l 6=i

(αjl(η) + γk(z, η))Ejk(z, η), j ∈ R−, k ∈ Rm−. (6.20)
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Let S(z, η) be the K̄m × K̄m-dimensional matrix so that its j-th row is the j −
⌊

j−1
K̄

⌋
-th

row of matrix tK̄(j)S(z, η), or

S(z, η) =




1S(z, η)
2S(z, η)

...
mS(z, η)


 .

We impose the following condition.

Condition 6.3.2
detS(z, η) 6= 0 for z 6= 0 and Re(η) ≥ 0.

Let C0 be the K̄m × N -dimensional matrix defined by

C0 =




IK̄N

IK̄N
...

IK̄N


 ,

where IK̄N is the K̄ × N -dimensional matrix defined on page 136. Define the K̄m × N -
matrix C(z, η) by

C(z, η) = S−1(z, η)C0, |z| ≤ 1, Re(η) ≥ 0. (6.21)

Notice that the last N − K̄ columns of C(z, η) are equal zero. Now, define for (|z| < 1,
Re(η) ≥ 0, Re(φ) ≥ 0) or (|z| ≤ 1, Re(η) > 0, Re(φ) ≥ 0) or (|z| ≤ 1, Re(η) ≥ 0,
Re(φ) > 0), the N × N -matrix K(z, φ, η) by

K(z, φ, η) = I + D(z, η)diag

(
1

φ − γ1(z, η)
, . . . ,

1

φ − γK̄m(z, η)

)
C(z, η). (6.22)

We now give the explicit factorization theorem.

Theorem 6.3.1
If Condition 6.3.1 and 6.3.2 are satisfied then for (|z| < 1, Re(η) ≥ 0) or

(|z| ≤ 1, Re(η) > 0) ,

1. detK(z, φ, η) =
K̄m∏

i=1

(
φ + αtm(i)(η)

φ − γi(z, η)

)
,

2. for Re(φ) = 0
H(z, φ, η) = H+(z, φ, η)H−(z, φ, η)
where

(a) H−(z, φ, η) = K−1(z, φ, η)

(b) H+(z, φ, η) = H(z, φ, η)K(z, φ, η)
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(c) H+(z, φ, η) is analytic for Re(φ) > 0, and continuous and bounded for
Re(φ) ≥ 0, and non-singular in Re(φ) > 0,

H−(z, φ, η) is analytic for Re(φ) < 0, and continuous and bounded for
Re(φ) ≤ 0, and non-singular in Re(φ) < 0.

Proof.
By rearranging the diagonal elements of matrix M−1(φ, η) into its partial fractions we have
that

H+(z, φ, η) = H(z, φ, η)K(z, φ, η)

= K(z, φ, η) − zPh(φ, η)r−m

N∑

i=1

1T
i 1i∏m

j=1(φ + αij(η))
K(z, φ, η)

= K(z, φ, η) − zPh(φ, η)r−m

N∑

i=1

m∑

j=1

Aij(η)IijIT
ij

(φ + αij(η))
K(z, φ, η),

(6.23)

where

• Aij(η), i = 1, 2, · · · , N, j = 1, 2, · · · ,m are constants not depending on φ,

• 1i is the N−dimensional row vector with ith component 1 and all other components
equal to 0,

• Iij is the N×Nm-matrix with (i, (j−1)N +i) -th element 1 and all other components
equal to 0.

Moreover, for l ∈ Rm− with tm(l) = (i1, i2) we have using (6.22), (6.18), (6.21), and
(6.20),

IT
i1i2

K(z,−αi1i2(η), η)

= IT
i1i2

− IT
i1i2

K̄m∑

j=1

Dj(z, η)Cj(z, η)/(αi1i2(η) + γj(z, η))

= IT
i1i2

− 1̄T
(i2−1)N+i1

K̄m∑

j=1

∏m
k=1(αi1k(η) + γj(z, η))

(αi1i2(η) + γj(z, η))
Ei1j(z, η)Cj(z, η)

= IT
i1i2

− 1̄T
(i2−1)N+i1

K̄m∑

j=1

i2Si1j(z, η)S−1
j (z, η)C0IK̄N

= IT
i1i2

− 1̄T
(i2−1)N+i1

1i1

= IT
i1i2

− IT
i1i2

= 0,

where 1̄i is the K̄m-dimensional row vector with ith component 1 and all other components
equal to 0. This yields for l ∈ Rm−,

lim
φ→−αtm(l)

(φ + αtm(l))H
+(z, φ, η) = 0,



146 Semi - Markovian Fluid Flow Model

and this shows that H+(z, φ, η) has no pole at φ = −αtm(l), l ∈ Rm−.
As in the proof of Theorem 5.3.1 in chapter 5 we can show that

detK(z, φ, η) =
K̄m∏

i=1

(
φ + αtm(i)(η)

φ − γi(z, η)

)
,

which proves part 1 of the theorem.
We see from (6.22) that

H+(z, φ, η) = H(z, φ, η) + H(z, φ, η)
K̄m∑

j=1

Dj(z, η)Cj(z, η)

(φ − γj(z, η))
,

so from (6.7), Condition 6.3.1, and (6.19) it follows that for i ∈ Rm−,

lim
φ→γi(z,η)

(φ − γi(z, η))H+(z, φ, η) = H(z, γi(z, η), η)Di(z, η)Ci(z, η) = 0,

which proves part 2 of the theorem. �

With this result we can write for the system (6.5)

Z(z, φ, η, v)H(z, φ, η)K(z, φ, η) = zZ0(φ, η, v)K(z, φ, η) + V(z, φ, η, v)K(z, φ, η), (6.24)

where the left-hand side is analytic in Re(φ) > 0 and bounded and continuous in
Re(φ) ≥ 0, and the last term of the right-hand side is analytic in Re(φ) < 0 and bounded
and continuous in Re(φ) ≤ 0.

Next we decompose the first term of the right-hand side, we determine functions K+ and
K− such that i.e. for Re(φ) = 0,

Z0(φ, η, v)K(z, φ, η) = K+(z, φ, η, v) + K−(z, φ, η, v) (6.25)

where

K+(z, φ, η, v) is analytic for Re(φ) > 0, and continuous and bounded for
Re(φ) ≥ 0,

K−(z, φ, η, v) is analytic for Re(φ) < 0, and continuous and bounded for
Re(φ) ≤ 0.

Lemma 6.3.3
If Conditions 6.3.1 and 6.3.2 are satisfied then for Re(φ) ≥ 0,

K+
ij (z, φ, η, v)

= δijZ
0
i (φ, η, v) +

K̄m∑

k=1

Dik(z, η)
Z0

i (φ, η, v) − Z0
i (γk(z, η), η, v)

φ − γk(z, η)
Ckj(z, η)
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(6.26)

and for Re(φ) ≤ 0,

K−
ij (z, φ, η, v) =

K̄m∑

k=1

Dik(z, η)
Z0

i (γk(z, η), η, v)

φ − γk(z, η)
Ckj(z, η) (6.27)

if (|z| < 1, Re(η) ≥ 0) or (|z| ≤ 1, Re(η) > 0) .

Proof. Since by definition the zeroes γk(z, η), i = 1, 2, · · · , K̄m all lie in the right half-
plane Re(φ) ≥ 0, it is clear that for i, j ∈ N , K−

ij (z, φ, η, v) does not have any pole in the
left half-plane Re(φ) < 0.

For l = 1, 2, · · · , K̄m it follows from (6.18), (6.20) and Condition 6.3.1 that

lim
φ→γl(z,η)

(φ − γl(z, η))K+
ij (z, φ, η, v)

= lim
φ→γl(z,η)

(φ − γl(z, η))δijZ
0
i (φ, η, v)

+ lim
φ→γl(z,η)

(φ − γl(z, η))
K̄m∑

k=1

Dik(z, η)
Z0

i (φ, η, v) − Z0
i (γk(z, η), η, v)

φ − γk(z, η)
Ckj(z, η)

= lim
φ→γl(z,η)

(φ − γl(z, η))δijZ
0
i (φ, η, v),

where the expression for Z0
i (φ, η, v) is given by (6.6). It follows that for l = 1, 2, · · · , K̄m,

i, j ∈ N ,
lim

φ→γl(z,η)
(φ − γl(z, η))K+

ij (z, φ, η, v) = 0,

thus K+
ij (z, φ, η, v) is analytic in the right half-plane Re(φ) > 0.

�

Theorem 6.3.2
If conditions 6.3.1 and 6.3.2 are satisfied then for Re(φ) ≥ 0,

Z(z, φ, η, v)H(z, φ, η)K(z, φ, η) = zK+(z, φ, η, v) + zK−(z, 0, η, v) (6.28)

if (|z| < 1, Re(η) ≥ 0) or (|z| ≤ 1, Re(η) > 0) .

Proof. See the proof of Theorem 5.3.2 in chapter 5.
�

In section 6.4 we will study the distribution of the buffer content. We will see that the
expression for the distribution functions of interest can be obtained once we find an explicit
expression for Z(1, φ, η, v), which can be easily found by multiplying both sides of (6.28)
with H+(z, φ, η)−1 = [H(z, φ, η)K(z, φ, η)]−1 . Lemma 6.3.5 below gives us an expression
for H+(z, φ, η)−1, and in the following we first define some vectors and matrices that will
be used in the lemma.
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By definition,
H(z, φ, η)−1 = M(φ, η)L(1, φ, η)−1.

To obtain an explicit expression for L(1, φ, η)−1, first we rewrite the matrix L(1, φ, η) as

L(1, φ, η) = φmI +
m−1∑

i=0

φiLi(η).

Due to theorem A.5.1 on page 189 in the appendix, the expression for L(1, φ, η)−1 is given
by

L(1, φ, η)−1 = P1(φI − CL(η))−1R1, (6.29)

where

P1 = (I 0 · · ·0), R1 =




0
...
0
I


 ,

and the (first) companion matrix of L(1, φ, η) is defined by

CL =




0 I 0 · · · 0

0 0 I · · · ...
...

...
...

... I
−L0(η) −L1(η) −L2(η) · · · −Lm−1(η)


 .

Let
γγγ(η) = diag(γ1(1, η), · · · , γNm(1, η)),

and let
Ẽ(η) = (e1(η) · · · eNm(η)),

where ei(η) is the eigenvector that corresponds to the eigenvalue γi(1, η) of CL (note that
the eigenvalues of CL are also the zeros of detL(1, φ, η)). If condition 6.3.1 is satisfied, the

rank of Ẽ(η) is Nm, and we can write

γγγ(η) = Ẽ(η)−1CL(η)Ẽ(η).

It follows that

L(1, φ, η)−1 =E(η)(φI − γγγ(η))−1Y(η)

=
Nm∑

i=1

Ei(η),Yi(η)

(φ − γi(1, η))
,

(6.30)

where
E(η) = P1Ẽ(η), Y(η) = Ẽ(η)−1R1,

with Ei(η)(Yi(η)) denoting the ith column(row) of matrix E(η)(Y(η)). It can be easily
shown that the matrix Ei(η) is the same as E(1, η) defined on page 143. For brevity, in
the rest of this chapter we will use the notation Ei(η) instead of E(1, η).
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To obtain an explicit expression for K(z, φ, η)−1, define for Re(φ) ≥ 0, Re(η) ≥ 0, the
K̄m × K̄m-matrix X(φ, η) by

X(φ, η) = φĨ − diag(γ1(1, η), . . . , γK̄m(1, η)) + C(1, η)D(1, η), (6.31)

where Ĩ is the K̄m × K̄m identity matrix.

Lemma 6.3.4
For Re(φ) ≥ 0, Re(η) ≥ 0,

X(φ, η)−1 = S(1, η)−1(φĨ + α̃αα(η))−1S(1, η), (6.32)

where

α̃αα(η) = diag(α11(η), α21(η), · · · , αK̄1(η), α12(η), · · · , αK̄2(η), · · · , αK̄m(η)). (6.33)

Proof. See page 194 in the appendix.

Now we have the explicit expression for H+(1, φ, η)−1 which is given in the following
lemma.

Lemma 6.3.5
If Conditions 6.3.1 and 6.3.2 are satisfied then for Re(φ) ≥ 0, Re(η) > 0,

H+(1, φ, η)−1

=
(
I − D(1, η)S(1, η)−1(φĨ + α̃αα(η))−1C0

)
M(φ, η)

Nm∑

k=1

Ek(η)Yk(η)

(φ − γk(1, η))
.

(6.34)

Proof. If Conditions 6.3.1 and 6.3.2 are satisfied then from (6.12) and (6.30) we obtain
for Re(φ) ≥ 0, Re(η) > 0,

H(1, φ, η)−1 = M(φ, η)
Nm∑

i=1

Ei(η)Yi(η)

(φ − γi(1, η))
. (6.35)

Moreover, from (6.22), (A.10) in the appendix, and (6.32) we also have for Re(φ) ≥ 0,
Re(η) > 0,

K(1, φ, η)−1

=I − D(1, η)X(φ, η)−1C(1, η)

=I − D(1, η)S(1, η)−1(φĨ + α̃αα(η))−1S(1, η)C(1, η)

=I − D(1, η)S(1, η)−1(φI + α̃αα(η))−1C0. (6.36)

Since H+(1, φ, η)−1 = K(1, φ, η)−1H(1, φ, η)−1, then from (6.36) and (6.35) we obtain
(6.34), and it proves the lemma.

�
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In order to have closed-form expressions for the Laplace-Stieltjes transforms of probability
distributions of interest, in the following we will rewrite the rational matrix Z(1, φ, η, v) in
a form so that in each element the degree of the numerator is less than the degree of the
denominator. In doing so, we note that for every positive integer n,

n∏

k=1

(φ + ak) =
n∑

k=0

φkck, (6.37)

where the coefficients cn−k are given by

cn = 1, (6.38)

cn−k =
∑

l1,l2,··· ,lk∈C
n
k

k∏

j=1

alj , (6.39)

where Cn
k is the set of combinations of k elements out of {1, 2, · · · , n}, k = 1, 2, · · · , n.

Besides the rearrangement (6.37), we also should consider the following lemma.

Lemma 6.3.6
For l = 1, · · · ,m − 1,

Nm∑

k=1

φlEk(η)Yk(η)

(φ − γk(1, η))
=

Nm∑

k=1

γk(1, η)lEk(η)Yk(η)

(φ − γk(1, η))
,

and

Nm∑

k=1

φmEk(η)Yk(η)

(φ − γk(1, η))
= I +

Nm∑

k=1

γk(1, η)mEk(η)Yk(η)

(φ − γk(1, η))
.

Proof. The matrices E(η) and Y(η) have the property (see page 52 of Gohberg et al.[28]
for the proof) that

E(η)γγγkY(η) =

{
0 , for k = 0, · · · ,m − 2,

I , for k = m − 1,

so that

Nm∑

k=1

φEk(η)Yk(η)

(φ − γk(1, η))
=

Nm∑

k=1

(φ − γk(1, η) + γk(1, η))Ek(η)Yk(η)

(φ − γk(1, η))

=
Nm∑

k=1

Ek(η)Yk(η) +
Nm∑

k=1

γk(1, η)Ek(η)Yk(η)

(φ − γk(1, η))

=
Nm∑

k=1

γk(1, η)Ek(η)Yk(η)

(φ − γk(1, η))
.
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Furthermore, we can prove by induction that for l = 1, · · · ,m − 1,

Nm∑

k=1

φlEk(η)Yk(η)

(φ − γk(1, η))
=

Nm∑

k=1

γk(1, η)lEk(η)Yk(η)

(φ − γk(1, η))
.

For l = m, it follows that

Nm∑

k=1

φmEk(η)Yk(η)

(φ − γk(1, η))
= φ

Nm∑

k=1

φm−1Ek(η)Yk(η)

(φ − γk(1, η))

= φ

Nm∑

k=1

γk(1, η)m−1Ek(η)Yk(η)

(φ − γk(1, η))

= I +
Nm∑

k=1

γk(1, η)mEk(η)Yk(η)

(φ − γk(1, η))
.

�

With the explicit expression for H+(1, φ, η)−1 given by (6.34), together with (6.37) and
Lemma 6.3.6, we are halfway to an explicit expression for Z(1, φ, η, v).

From (6.28) we obtain Re(φ) ≥ 0, Re(η) > 0,

Z(1, φ, η, v) =
(
K+(1, φ, η, v) + K−(1, 0, η, v)

)
H+(1, φ, η)−1.

Now, using (6.25) and by definition of K−
ij (1, φ, η, v), K+(1, φ, η, v) + K−(1, 0, η, v) can be

rewritten as

Z0(φ, η, v)K(φ, η, v) − φ

K̄m∑

i=1

Z0(γi(1, η), η, v)Di(1, η)Ci(1, η)

γi(1, η)(φ − γi(1, η))
,

so that by multiplying with H+(1, φ, η)−1, as given by (6.34), yields for Re(φ) ≥ 0,
Re(η) > 0,

Z(1, φ, η, v)

=Z0(φ, η, v)M(φ, η)
Nm∑

i=1

Ei(η)Yi(η)

(φ − γi(1, η))

− φ
K̄m∑

i=1

Z0(γi(1, η), η, v)Di(1, η)Ci(1, η)

γi(1, η)(φ − γi(1, η))

(
I − D(1, η)X(φ, η)−1C(1, η)

)

.M(φ, η)
Nm∑

k=1

Ek(η)Yk(η)

(φ − γk(1, η))
.

(6.40)

Using (6.31) we see that

Ci(1, η)
(
I − D(1, η)X−1(φ, η)C(1, η)

)

=Ci(1, η) − (Ci(1, η)D(1, η) + (φ − γi(1, η))1i)X
−1(φ, η)C(1, η)

+ (φ − γi(1, η))1iX
−1(φ, η)C(1, η)

=Ci(1, η) − Ci(1, η) − (φ − γi(1, η))1iX
−1(φ, η)C(1, η)

=(φ − γi(1, η))1iX
−1(φ, η)C(1, η),

(6.41)
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and by substituting this to (6.40) and by using (6.32) we obtain for Re(φ) ≥ 0, Re(η) > 0,

Z(1, φ, η, v)

=Z0(φ, η, v)M(φ, η)
Nm∑

k=1

Ek(η)Yk(η)

(φ − γk(1, η))

− φ
K̄m∑

i=1

Z0(γi(1, η), η, v)Di(1, η)(S(1, η)−1)i

γi(1, η)

[
φĨ + α̃̃α̃α(η)

]−1

C0M(φ, η)

.

Nm∑

k=1

Ek(η)Yk(η)

(φ − γk(1, η))
.

(6.42)

In Appendix A.10 we check that Z(1, φ, η, v) is indeed analytic in the right half-plane
Re(φ) ≥ 0.

In the following we will use the rearrangement (6.37) and Lemma 6.3.7 to rewrite the
right hand-side of (6.42) so that in each term, the degree of the numerator is less than the
degree of the denominator.

For j = 1, · · · ,m, define the map

θj : M\ {j} 7→ {1, 2, · · · ,m − 1},

where

θj(k) =

{
k , k ≤ j − 1,

k − 1 , k > j.

For brevity, we will often write by θj = k for θj(l) = k, l ∈ M \ {j}.

We first consider the matrix

Z0(φ, η, v)M(φ, η)
Nm∑

k=1

Ek(η)Yk(η)

(φ − γk(1, η))
.

From (6.6) and (6.10) we obtain for Re(φ) ≥ 0, Re(η) ≥ 0,

Z0(φ, η, v)M(φ, η) =A0(η)M(φ, η) +
m∑

j=1

Aj(φ, η)M̃j(φ, η), (6.43)

where

A0(η) = diag

(
m∑

k=1

a1kµ1ke
α1k(η)v

r1α1k(η)
, · · · ,

m∑

k=1

aK̄kµK̄ke
αK̄k(η)v

rK̄αK̄k(η)
, 0, · · · , 0

)
,

and for j = 1, · · · ,m,

Aj(φ, η) = diag

(
a1jµ1je1j(φ, η)

r1

, · · · ,
aNjµNje1N(φ, η)

rN

)
,
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with

eij(φ, η) =

{
e−φv − eαij(η)v, for j ≤ K̄,
e−φv, for j > K̄.

and

M̃j(φ, η) =
m−1∏

θj=1

(φI + αααθj
(η)), j = 1, 2, · · · ,m.

By using the rearrangement (6.37), we can write

M(φ, η) =
m∑

l=0

φlM0l(η), (6.44)

where

M0m(η) = I, (6.45)

M0(m−k)(η) =
∑

l1,l2,··· ,lk∈C
m
k

k∏

j=1

αααlj(η), (6.46)

where Cm
k is the set of combinations of k elements out of {1, 2, · · · ,m}, k = 1, 2, · · · ,m.

We also can write

M̃j(φ, η) =
m−1∑

k=0

φkMjk(η), (6.47)

where for j = 1, · · · ,m, k = 0, · · · ,m−1, the matrices Mjk(η) are N×N -diagonal matrices
whose diagonal elements are defined in the following.

Since the ith diagonal element of M̃j(φ, η) is
∏m−1

θj=1(φ + αiθj
(η)), we can rewrite this

element as
∑m−1

k=0 φkc(η, i, j, k), in which the coefficients c(η, i, j, k), according to (6.38) -
(6.39), are given by

c(η, i, j,m − 1) = 1, (6.48)

c(η, i, j,m − 1 − k) =
∑

l1,l2,··· ,lk∈Θj
k

k∏

j=1

αilj(η), (6.49)

where Θj
k is the set of combinations of k elements out of M\{j}, k = 1, 2, · · · ,m− 1. For

j ∈ M, k = 0, · · · ,m−1, we then can define Mjk(η) as the N ×N -diagonal matrices with
its ith diagonal element equal c(η, i, j, k).
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From (6.43), (6.44), (6.47), and Lemma 6.3.6 we then obtain for Re(φ) ≥ 0, Re(η) > 0,

Z0(φ, η, v)M(φ, η)
Nm∑

k=1

Ek(η)Yk(η)

(φ − γk(1, η))

=A0(η)
m∑

l=0

M0l(η)
Nm∑

k=1

φlEk(η)Yk(η)

(φ − γk(1, η))

+
m∑

l=1

Al(φ, η)
m−1∑

k1=1

Mlk1(η)
Nm∑

k2=1

φk1Ek2(η)Yk2(η)

(φ − γk2(1, η))

=A0(η) + A0(η)
m∑

l=0

M0l(η)
Nm∑

k=1

γk(1, η)lEk(η)Yk(η)

(φ − γk(1, η))

+
m∑

l=1

Al(φ, η)
m−1∑

k1=1

Mlk1(η)
Nm∑

k2=1

γk1
k2

Ek2(η)Yk2(η)

(φ − γk2(1, η))
.

(6.50)

We now rewrite the rational matrix

(φĨ + α̃αα(η))−1C0M(φ, η)
Nm∑

k=1

Ek(η)Yk(η)

(φ − γk(1, η))

which is part of the second term of the right hand-side of (6.42).
By definition, we can write

C0M(φ, η) =




IK̄NM(φ, η)
IK̄NM(φ, η)

...
IK̄NM(φ, η)


 ,

so that by rearrangement (6.37),

(φĨ + α̃αα(η))−1C0M(φ, η) =




IK̄N(φI + ααα1)
−1M(φ, η)

IK̄N(φI + ααα2)
−1M(φ, η)

...
IK̄N(φI + αααm)−1M(φ, η)




=




IK̄NM̃1(η)

IK̄NM̃2(η)
...

IK̄NM̃m(η)




=




IK̄N

∑m−1
k=0 M1k(η)

IK̄N

∑m−1
k=0 M2k(η)

...

IK̄N

∑m−1
k=0 Mmk(η)


 . (6.51)
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Define K̄m × N -dimensional matrices:

Lm−1(η) =




IK̄N

IK̄N
...

IK̄N


 = C0, (6.52)

Ll(η) =




IK̄NM1l(η)
IK̄NM2l(η)

...
IK̄NMml(η)


 , l = 0, 1, · · · ,m − 2, (6.53)

where the matrices Mjl(η) are defined on page 153. With the definition of Ll(η), l =
0, · · · ,m − 1 above, we obtain the following lemma.

Lemma 6.3.7
For Re(φ) ≥ 0, Re(η) > 0,

(φĨ + α̃αα(η))−1C0M(φ, η)
Nm∑

k=1

Ek(η)Yk(η)

(φ − γk(1, η))
=

m−1∑

l=0

Ll(η)
Nm∑

k=1

γk(1, η)lEk(η)Yk(η)

(φ − γk(1, η))
. (6.54)

Proof. From (6.51) we have

(φĨ + α̃αα(η))−1C0M(φ, η)
Nm∑

k=1

Ek(η)Yk(η)

(φ − γk(1, η))
=

m−1∑

l=0

Ll(η)
Nm∑

k=1

φlEk(η)Yk(η)

(φ − γk(1, η))
.

By using Lemma 6.3.6, we then obtain (6.54). �

From (6.75), (6.50), and (6.51) we obtain an explicit expression for Z(1, φ, η, v), which
we write in the following theorem.

Theorem 6.3.3
If Conditions 6.3.1 and 6.3.2 are satisfied then for Re(φ) ≥ 0, Re(η) > 0,

Z(1, φ, η, v) =A0(η) + A0(η)
m∑

l=0

M0l(η)
Nm∑

k=1

γk(1, η)lEk(η)Yk(η)

(φ − γk(1, η))

+
m∑

l=1

Al(φ, η)
m−1∑

k1=0

Mlk1(η)
Nm∑

k2=1

γk1
k2

Ek2(η)Yk2(η)

(φ − γk2(1, η))

− A(η)C0 − A(η)
m−1∑

l=0

Ll(η)
Nm∑

k=1

γk(1, η)l+1Ek(η)Yk(η)

(φ − γk(1, η))
,

(6.55)

where

A(η) =
K̄m∑

i=1

Z0(γi(1, η), η, v)Di(1, η)(S(1, η)−1)i

γi(1, η)
.

With this theorem, it is easy to obtain closed-form Laplace-Stieltjes transforms of the
probability distributions of interest, which will be derived in the sections 6.4 and 6.5.
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6.4 Inverse transformation

In this section we consider the distribution functions Fij(x, t, v), for i, j ∈ N , of the
buffer content at time t ≥ 0 for initial buffer content V0 = v.

If Jt = j then Vt, the buffer content at time t, satisfies the relation

Vt = [WNt + rj(t − TNt)]
+,

where Nt is the number of transitions of the process {Jt} during (0, t]. Consequently, for
Re(φ) ≥ 0,

E
(
e−φVt1(Jt = j)|X1 = i, V0 = v

)

=E
(
e−φ[W0+rj(t−T0)]+1(T0 ≤ t < T1, Jt = j)|X1 = i, V0 = v

)

+
∞∑

n=1

E
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ t < Tn+1, Jt = j)|X1 = i, V0 = v

)
,

(6.56)

where

∞∑

n=1

E
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ t < Tn+1, Jt = j)|X1 = i, V0 = v

)

=
∞∑

n=1

N∑

l=1

E
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ t < Tn+1, Xn = l, Xn+1 = j)

|X1 = i, V0 = v)

=
∞∑

n=1

N∑

l=1

∫ t

0

P (An+1 > t − u,Xn+1 = j|Xn = l)

.duE
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ u,Xn = l)|X1 = i, V0 = v

)

=
∞∑

n=1

N∑

l=1

∫ t

0

Plj

m∑

k=1

ajke
−µjk(t−u)

.duE
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ u,Xn = l)|X1 = i, V0 = v

)
.

(6.57)

From the identity(see page 269 of [17])

e−φx+

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξx, with x real, Re(φ) > Re(ξ) > 0,

where the path of integration is a line parallel to the imaginary axis, we have

E
(
e−φ[Wn+rj(t−Tn)]+1(Tn ≤ u,Xn = l)|X1 = i, V0 = v

)

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξrjtE

(
e−ξWn+rjξTn1(Tn ≤ u,Xn = l)

|X1 = i, V0 = v)

(6.58)
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and

E
(
e−φ[W0+rj(t−T0)]+1(T0 ≤ t < T1, Jt = j)|X1 = i, V0 = v

)

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξ(v+rjt)E (1(t < T1, Jt = j)|X1 = i, V0 = v).

(6.59)

Combining (6.56), (6.57),(6.58) and (6.59) yields
∫ ∞

0

e−ηtE
(
e−φVt1(Jt = j)|X1 = i, V0 = v

)
dt

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξv

∫ ∞

0

e−ηt−ξrjtP (t < T1, Jt = j|X1 = i, V0 = v) dt

+
∞∑

n=1

N∑

l=1

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ

∫ ∞

0

e−ηt

∫ t

0

Plj

m∑

k=1

ajke
−µjk(t−u)e−ξrjt

.duE
(
e−ξWn+rjξTn1(Tn ≤ u,Xn = l)|X1 = i, V0 = v

)
dt

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξv

∫ ∞

0

e−ηt−ξrjt

m∑

k=1

ajke
−µjktδijdt

+
∞∑

n=1

N∑

l=1

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
E
(
e−ξWn−ηTn1(Xn = l)|X1 = i, V0 = v

)

.Plj

m∑

k=1

ajk/(η + µjk + ξrj)

=
1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
e−ξvδij

m∑

k=1

ajk

(rjξ + µjk + η)

+
N∑

l=1

1

2πi

∫ i∞+0

−i∞+0

dξ

ξ

φ

φ − ξ
Zil(1, ξ, η, v)Plj

m∑

k=1

ajk

(η + µjk + ξrj)
.

(6.60)

For Re(φ) ≥ 0, Re(η) > 0, let

Z∗
ij(φ, η, v) =

∫ ∞

0

e−ηtE
(
e−φVt1(Jt = j)|X1 = i, V0 = v

)
dt. (6.61)

We evaluate the integrals in (6.60) by considering the poles of the integrands in the
right half-plane Re(φ) > 0. It follows that for Re(φ) ≥ 0, Re(η) > 0, j ∈ R−,

Z∗
ij(φ, η, v) =

δij

rj

m∑

k=1

ajk

[
αjk(η)e−φv + φeαjk(η)v

]

αjk(η)(φ + αjk(η))

+
1

rj

N∑

l=1

Zil(1, φ, η, v)Plj

m∑

k=1

ajk

(φ + αjk(η))

+
1

rj

N∑

l=1

m∑

k=1

Zil(1,−αjk(η), η, v)Plj
φ

(φ + αjk(η))

ajk

αjk(η)
,

(6.62)
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and for j ∈ R+,

Z∗
ij(φ, η, v) =

1

rj

e−φvδij

m∑

k=1

ajk

(φ + αjk(η))

+
1

rj

N∑

l=1

Zil(1, φ, η, v)Plj

m∑

k=1

ajk

(φ + αjk(η))
.

(6.63)

It is easy to see that for k = 1, 2, · · · ,m, −αjk(η) is not a pole of Z∗
ij(φ, η, v) as a function

of φ in the domain Re(φ) > 0.

By substituting the explicit expression for Zil(1, φ, η, v) given by (6.55), we can invert
Z∗

ij(φ, η, v) analytically to obtain the Laplace-Stieltjes transform

ξij(x, η, v) =

∫ ∞

0

e−ηtFij(x, t, v)dt, Re(η) ≥ 0, i, j ∈ N . (6.64)

The expressions for ξi,j(x, η, v), i, j ∈ N given in Theorem 6.4.1 below are obtained
by contour integration through the inversion formula for Laplace-Stieltjes transform, see
Lemma A.3.1 in the appendix. Since the only singularities of Z∗

ij(φ, η, v) in (6.62) and (6.63)
are simple poles, the result of this contour integration is obtained from the corresponding
residues.

From (6.55) and (A.10) we see that the poles of Zij(1, φ, η, v) in the left half-plane
Re(φ) < 0 are γl(1, η), l = K̄m+1, K̄m+2, · · · , Nm. The −αik(η), k = 1, 2, · · · ,m, which
are the poles of Z0

i (φ, η, v) in the left half-plane Re(φ < 0) for i ∈ R+, are not poles of
Zij(1, φ, η, v) since the factor 1/

∏m
k=1(φ + αik(η)) of Z0

i (φ, η, v) in Zij(1, φ, η, v) will be
cancelled when multiplying Z0(φ, η, v) by M(φ, η).

From (6.62) and (6.63), it can be seen that for j ∈ R−, the poles of Z∗
ij(1, φ, η, v) are

the poles of Zil(1, φ, η, v), l = 1, 2, · · · , N, and for j ∈ R+, the poles of Z∗
ij(φ, η, v) are the

poles of Zil(1, φ, η, v), l = 1, 2, · · · , N, and φ = −αjk(η), k = 1, 2, · · · ,m.

Define for l1 = K̄m + 1, · · · , Nm, the N × N -matrix

U l1
il (η) =

[
A(η)

m−1∑

l2=0

Ll2(η)γl2
l1
El1(η)Yl1(η)

]

il

. (6.65)

We denote by Bk
j (η) the kth diagonal element of the matrix Bj(η). Then by using all poles

of Z∗
ij(φ, η, v), and by using the expression for Z0

i (φ, η, v) given in Theorem 6.2.1, we obtain
after length but straightforward calculations, taking into account the above arguments, the
following theorem.
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Theorem 6.4.1
If Condition 6.3.1 and 6.3.2 are satisfied, then for x ≥ 0, Re(η) > 0,

ξij(x, η, v)

= − 1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

Ai
0(η)

m∑

l3=0

Mi
0l3

(η)γl3−1
l1

(1, η)
(
El1(η)Yl1(η)

)
il2

Pl2j

.

m∑

k=1

ajk

(γl1(1, η) + αjk(η))
(1 − eγl1

x)

− 1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

m∑

l3=1

ail3µil3

ri

m−1∑

l4=0

Mi
l3l4

(η)γl4−1
l1

(1, η)
(
El1(η)Yl1(η)

)
il2

.Pl2j

m∑

k=1

ajk

(γl1(1, η) + αjk(η))

(
1 − eγl1

(x−v)
)
H(x − v)

+
1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

m∑

l3=1

ail3µil3e
αil3

(η)

ri

m−1∑

l4=0

Mi
l3l4

(η)γl4−1
l1

(1, η)
(
El1(η)Yl1(η)

)
il2

.Pl2j

m∑

k=1

ajk

(γl1(1, η) + αjk(η))
(1 − eγl1

x)

+
1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

U l1
il2

(η, v)Plj

m∑

k=1

ajk

(γl1(1, η) + αjk(η))

(
1 − eγl1

(1,η)x
)
,

(6.66)

for i, j ∈ R−,

ξij(x, η, v)

= − 1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

m∑

l3=1

Ai
l3
(η)

m−1∑

l4=1

Mi
l3l4

(η)γl4−1
l1

(1, η)
(
El1(η)Yl1(η)

)
il2

.Pl2j

m∑

k=1

ajk

(γl1(1, η) + αjk(η))

(
1 − eγl1

(x−v)
)
H(x − v)

+
1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

U l1
il2

(η, v)Plj

m∑

k=1

ajk

(γl1(1, η) + αjk(η))

(
1 − eγl1

(1,η)x
)
,

(6.67)
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for i ∈ R+ and j ∈ R−,

ξij(x, η, v)

=
δij

rj

m∑

k=1

ajk

αjk(η)

(
1 − e−αjk(η)(x−v)

)
H(x − v)

− 1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

Ai
0(η)

m∑

l3=0

Mi
0l3

(η)γl3−1
l1

(1, η)
(
El1(η)Yl1(η)

)
il2

Pl2j

.

m∑

k=1

ajk

(γl1(1, η) + αjk(η))
(1 − eγl1

x)

− 1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

m∑

l3=1

ail3µil3

ri

m−1∑

l4=0

Mi
l3l4

(η)γl4−1
l1

(1, η)
(
El1(η)Yl1(η)

)
il2

.Pl2j

m∑

k=1

ajk

(γl1(1, η) + αjk(η))

(
1 − eγl1

(x−v)
)
H(x − v)

− 1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

m∑

l3=1

ail3µil3e
αil3

(η)

ri

m−1∑

l4=0

Mi
l3l4

(η)γl4−1
l1

(1, η)
(
El1(η)Yl1(η)

)
il2

.Pl2j

m∑

k=1

ajk

(γl1(1, η) + αjk(η))
(1 − eγl1

x)

+
1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

U l1
il2

(η, v)Plj

m∑

k=1

ajk

(γl1(1, η) + αjk(η))

(
1 − eγl1

(1,η)x
)
,

(6.68)

for i ∈ R− and j ∈ R+,

ξij(x, η, v)

=
δij

rj

m∑

k=1

ajk

αjk(η)

(
1 − e−αjk(η)(x−v)

)
H(x − v)

− 1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

m∑

l3=1

Ai
l3
(η)

m−1∑

l4=1

Mi
l3l4

(η)γl4−1
l1

(1, η)
(
El1(η)Yl1(η)

)
il2

.Pl2j

m∑

k=1

ajk

(γl1(1, η) + αjk(η))

(
1 − eγl1

(x−v)
)
H(x − v)

+
1

rj

Nm∑

l1=K̄m+1

N∑

l2=1

U l1
il2

(η, v)Plj

m∑

k=1

ajk

(γl1(1, η) + αjk(η))

(
1 − eγl1

(1,η)x
)
.

(6.69)

for i, j ∈ R+.

To get the distribution functions

Fij(x, t, v), i, j ∈ N ,

we can do a numerical inversion with respect to η of (6.66) - (6.69).
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6.5 The steady-state distribution of the buffer con-

tent

We have derived an explicit expression for the Laplace-Stieltjes transform ξij(x, η, v)
in Theorem 6.4.1. In this section we will use Abel’s limit theorem to get the steady-state
distribution of the buffer content if it exists. It is clear that the steady-state distribution
of the buffer content in continuous time exists if it exists at transition epochs. The follow-
ing theorem states the necessary and sufficient condition for the existence of the limiting
distribution of the buffer content at transition epochs.

Theorem 6.5.1
The process {(Wn, Vn), n = 0, 1, · · · } weakly converges to (W,V ) if and only if

N∑

j=1

πjrj < 0.

Proof. The process {(Wn, Xn)} is regenerative where for any i ∈ N the state (0, i)
can be seen as the regenerative state. Since the process {Xn} is assumed to have a
limiting distribution, the return times of the process {(Wn, Xn)} are aperiodic so that
limn→∞ P{Wn ≤ x,Xn = j|X1 = i, V0 = v} for x ≥ 0 exists. If this limit is zero then no
limiting distribution exists, otherwise (Wn, Xn) converges weakly to a stationary random
vector (W,X).

From (6.26), (6.27) and Lemma 6.3.2 we see that if and only if
∑N

i=1 πiri < 1, for φ 6= 0,

lim
z↑1

(1 − z)K+
ij (z, φ, 0, v) + (1 − z)K−

ij (z, 0, 0, v)

= lim
z↑1

(1 − z)δijZ
0
i (φ, 0, v) − lim

z↑1
(1 − z)

K̄m∑

k=1

Dik(z, 0)
Z0

i (γk(z, 0), 0, v)

γk(z, 0)
Ckj(z, 0)

+ lim
z↑1

(1 − z)
K̄m∑

k=1

Dik(z, 0)
Z0

i (φ, 0, v) − Z0
i (γk(z, 0), 0, v)

φ − γk(z, 0)
Ckj(z, 0)

= − Di1(1, 0)Z0
i (γ1(1, 0), 0, v) lim

z↑1

(1 − z)

γ1(z, 0)
C1j(1, 0)

= − Di1(1, 0) lim
z↑1

(1 − z)

γ1(z, 0)
C1j(1, 0),

(6.70)

where

lim
z↑1

(1 − z)

γ1(z, 0)
= − 1(∑N

j=1 πjrj

)(∑N
j=1 pj

∑m
k=1

ajk

µjk

) 6= 0,

so that

lim
n→∞

E
(
e−φWn1(Xn = j)|X1 = i,W0 = v

)
= lim

z↑1
(1 − z)Zij(z, φ, 0, v) 6= 0.
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It follows that limn→∞ P{Wn ≤ x,Xn = j|X1 = i, V0 = v} 6= 0. We then can conclude that
if
∑N

j=1 πjrj < 0, the process (Wn, Xn) converges weakly to a stationary random vector
(W,X).

�

In the following subsection, we will derive the distribution function P (W ≤ x,X = j),
which from Theorem 6.5.1 exists if and only if

∑N
j=1 πjrj < 0. Then in subsection 6.5.2 we

will derive the distribution function of the steady-state buffer content in continuous time
based on the result in subsection 6.5.1.

6.5.1 The steady-state distribution of buffer content at transition
epochs

Let
Ei = Ei(1, 0), and γi = γi(1, 0), i = 1, 2, · · · , Nm.

By Lemma 6.3.2 we know that γ1 = 0. Let Y = Y(0), D = D(1, 0) and C = C(1, 0). Since
H(1, 0, 0) = I − G(0, 0) = I − P and H(1, 0, 0)D1(1, 0) = 0, we may put D1(1, 0) = 1. It
follows that Ei1 = 1∏m

j=1 αij
,

S1(1, 0) = (
1

α11

,
1

α21

, · · · ,
1

αK̄1

,
1

α12

,
1

α22

, · · · ,
1

αK̄2

, · · · ,
1

α1m

, · · · ,
1

αK̄m

)t.

Let

V1 =
1

d
dz

γ1(z, 0)
∣∣
z=1

=
N∑

j=1

pjrj

m∑

k=1

ajk

µjk

.

We also may put

Y1 =
1

V1

p,

where p is the stationary probability distribution vector of the Markov chain {Xn}.
Let for Re(φ) ≥ 0,

H(φ) = H(1, φ, 0),

K̃(φ) = I + Ddiag

(
0,

1

φ − γ2

, . . . ,
1

φ − γNm

)
C.

Moreover, let for Re(φ) ≥ 0,

X(φ) = X(φ, 0),

M(φ) = M(φ, 0),

S = S(1, 0),

S−1 = S(1, 0)−1,

and

H+(φ) =





H(φ)K̃(φ) + 1
φ
H(φ)D1C1, if φ 6= 0,

H(0)K̃(0) + H′(0)D1C1, if φ = 0.
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The matrix H+(φ) is the limit of H+(z, φ, 0) for z ↑ 1. Let Z(φ) be the N×N−dimensional
matrix with elements

Zij(φ) = E
(
e−φW1(X = j)|X1 = i,W0 = v

)

= lim
z↑1

(1 − z)Zij(z, φ, 0, v), j = 1, 2, . . . , N.

From Theorem 6.3.2 and (6.70) we now have for Re(φ) ≥ 0,

Z(φ)H+(φ) =
1

d
dz

γ1(z, 0)
∣∣
z=1

D1C1

= V1U,

(6.71)

where U is an N ×N−dimensional matrix with rows C1. This shows that Zij(φ) does not
depend on i and v.

From (6.71), if Conditions 6.3.1 and 6.3.2 are satisfied, we can find a closed form
expression for the Laplace-Stieltjes transform of the probability distribution in steady state
of the buffer content at transition epochs.

Let Z̄(φ) be the N− dimensional row vector with components Zj(φ), j = 1, 2, · · · , N.
From (6.71) we obtain for Re(φ) ≥ 0, using Lemma 6.3.1, Lemma 6.3.2, and Theorem
6.3.1, and (6.34),

Z̄(φ) = V1C1H
+(φ)−1

= V1C1

[
I − DX(φ)−1C

]
M(φ)

Nm∑

k=1

EkYk

(φ − γk)

(6.72)

We can show, in a similar way as for the derivation of (6.41), that for Re(φ) ≥ 0,

C1

[
I − DX(φ)−1C

]
= φ11S

−1
(
φĨ + α̃αα(0)

)−1

C0 = φS−1
1

(
φĨ + α̃αα(0)

)−1

C0. (6.73)

By substituting (6.73) into (6.72), and by letting

V2 = V1S
−1
1 ,

we obtain for Re(φ) ≥ 0,

Z̄(φ) =V2φ (φI + α̃αα(0))−1 C0M(φ)
Nm∑

k=1

EkYk

(φ − γk)
. (6.74)

By using Lemma 6.3.7, and setting η = 0, we then obtain for Re(φ) ≥ 0,

Z̄(φ) =V2L0(0)
Nm∑

k=1

φEkYk

(φ − γk)
+

m−1∑

l=1

Ll(0)
Nm∑

k=1

φγl
kE

kYk

(φ − γk)
. (6.75)

Noting that
V2L0(0)E1Y1 = V1Y1 = p
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and
φγl

kE
kYk

(φ − γk)
= γl

kE
kYk +

γl+1
k EkYk

(φ − γk)
,

where
∑Nm

k=1 γl
kE

kYk = 0, l = 0, · · · ,m − 2 and
∑Nm

k=1 γm−1
k EkYk = I, we then obtain for

Re(φ) ≥ 0,

Z̄(φ) =p + V2L0(0)
Nm∑

k=2

EkYk + V2L0(0)
Nm∑

k=2

γkE
kYk

(φ − γk)

+ V2

m−1∑

l=1

Ll(0)

[
Nm∑

k=1

γl
kE

kYk +
Nm∑

k=1

γl+1
k EkYk

(φ − γk)

]

=p + V2L0(0)
Nm∑

k=2

EkYk + V2L0(0)
Nm∑

k=2

γkE
kYk

(φ − γk)

+ V2C0 + V2

m−1∑

l=1

Ll(0)
Nm∑

k=2

γl+1
k EkYk

(φ − γk)
.

(6.76)

In a similar way as on page 195 in Appendix A.10, we can check that for j = 1, 2, · · · , K̄m,
limφ→γj

(φ − γj)Z̄(φ) = 0, or Z̄(φ) is analytic in the right half-plane Re(φ) ≥ 0.
The equation (6.75) shows us that we have a closed-form Laplace-Stieltjes transform

for the steady-state buffer content at transition epochs. By inverting the j-th element of
(6.75), we obtain for x ≥ 0, j = 1, 2, · · · , N,

P (W ≤ x,X = j)

= pj +
Nm∑

k=K̄m+1

[
V2L0(0)EkYk

]
j
eγkx −

Nm∑

k=K̄m+1

[
V2

m−2∑

l=1

Ll(0)γl
kE

kYk

]

j

+
Nm∑

k=K̄m+1

[
V2

m−1∑

l=1

Ll(0)γl
kE

kYk

]

j

eγkx,

(6.77)

which shows us that the steady-state distribution of the buffer content at transition epochs
is a mixture of exponentials and a concentration at 0. This structure is the same as the
structure of the corresponding distribution in chapter 5.

6.5.2 The steady-state distribution of the buffer content in con-
tinuous time

The process {(Vt, Jt), t ≥ 0} is regenerative, where the regeneration points are the
epochs at which the process leaves a state (0, i) for some i ∈ N . Since the times between
regeneration points are non-arithmetic and have finite expectation as can be inferred from
Theorem 6.5.1 and the finite means of inter-jump times of {Jt}, the process {(Vt, Jt), t ≥ 0}
converges weakly to a random vector (V, J). Let

Z∗
i (φ) = lim

t→∞
E
(
e−φVt1(Jt = i)

)
,
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which is independent of initial conditions and will be determined using Abel’s limit theo-
rem.

Lemma 6.5.1

d

dη
γ1(1, η)

∣∣
η=0

= −

N∑

j=1

pj

m∑

k=1

ajk

µjk

N∑

j=1

pjrj

m∑

k=1

ajk

ηjk

= − 1
N∑

j=1

πjrj

.

Proof. By the same argument as in the proof of Lemma 6.3.2 it is seen that there is a
vector v(η) with v(0) = 1 such that for i = 1, 2, · · · , N,

N∑

j=1

(δij − Gij(γ1(1, η), η))vj(η) = 0.

It is readily verified from this equation using the same procedure as in Lemma 6.3.2 that

d

dη
γ1(1, η)

∣∣
η=0

= −

N∑

i=1

pi

N∑

j=1

d

dη
Gij(0, η)

∣∣
η=0

N∑

i=1

pi

N∑

j=1

d

dφ
Gij(φ, 0)

∣∣
φ=0

and the result follows from the definition of G. �

Let V3 = −∑N
j=1 πjrj. Similar to the derivation of (6.70) we have

lim
η↓0

ηZil(1, φ, η, v) = −V3V(φ)l, (6.78)

where the N−dimensional row vector V(φ) is defined by

V(φ) = φS−1
1

m−1∑

l=0

Ll(0)
Nm∑

k=1

γl
kE

kYk

(φ − γk)
.

The expression (6.78) shows that limη↓0 ηZil(φ, η, v) does not depend on i and v.
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By applying Abel’s limit theorem to (6.62) and (6.63), relation (6.78) yields for Re(φ) ≥
0, j ∈ R−,

Z∗
j (φ) = lim

η↓0
ηZ∗

ij(φ, η, v)

=
1

rj

N∑

l=1

lim
η↓0

ηZil(1, φ, η, v)Plj

m∑

k=1

ajk

(φ + αjk(η))

+
1

rj

N∑

l=1

m∑

k=1

lim
η↓0

ηZil(1,−αjk(η), η, v)Plj
φ

(φ + αjk(η))

ajk

αjk(η)

= − V3

rj

N∑

l=1

V(φ)lPlj

m∑

k=1

ajk

(φ + αjk)

− V3

rj

N∑

l=1

m∑

k=1

V(−αjk)lPlj
φ

(φ + αjk)

ajk

αjk

,

(6.79)

and for j ∈ R+,

Z∗
j (φ) = lim

η↓0
ηZ∗

ij(φ, η, v)

=
1

rj

N∑

l=1

lim
η↓0

ηZil(1, φ, η, v)Plj

m∑

k=1

ajk

φ + αjk(η)

= − V3

rj

N∑

l=1

V (φ)lPlj

m∑

k=1

ajk

φ + αjk

.

(6.80)

Noting that

V (φ)l =

[
S−1

1 L0(0)
Nm∑

k=1

φEkYk

(φ − γk)

]

l

+
[
S−1

1 C0

]
l
+

[
m−1∑

l=1

S−1
1 Ll(0)

Nm∑

k=1

γl+1
k EkYk

(φ − γk)

]

l

=Yil +

[
S−1

1 L0(0)
Nm∑

k=2

φEkYk

(φ − γk)

]

l

+
[
S−1

1 C0

]
l

+

[
m−1∑

l=1

S−1
1 Ll(0)

Nm∑

k=1

γl+1
k EkYk

(φ − γk)

]

l

where Y1l = pl

V1
and

− V3

rjV1

N∑

l=1

plPlj

m∑

k=1

ajk

φ + αjk

= − V3

rjV1

pj

m∑

k=1

ajk

φ + αjk

,
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we then obtain for Re(φ) ≥ 0, j ∈ R−,

Z∗
j (φ)

= − V3pj

rjV1

m∑

k=1

ajk

φ + αjk

− V3

rj

N∑

l=1

[
S−1

1 C0

]
l
Plj

m∑

k=1

ajk

φ + αjk

− V3

rj
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and for Re(φ) ≥ 0, j ∈ R+,
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(6.82)

Like in subsection 6.5.1, we get a closed form Laplace-Stieltjes transform of the steady-
state buffer content in continuous time. By inverting (6.81) and (6.82) we obtain for
x ≥ 0, j = 1, 2, · · · , N,
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so that the second and the fifth term of the right-hand side of (6.83) are cancelled.

Equation (6.83) can thus be written as follows. For x ≥ 0, j = 1, 2, · · · , N,
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(6.84)

which shows us that the steady-state distribution of the buffer content in continuous time
is a mixture of exponentials and a concentration at 0. This structure is the same as the
structure of such distribution of the Markovian fluid flow model studied in chapter 5, and
aggrees the structure of such distribution of the semi-Markovian fluid flow model in [8].

6.6 Numerical examples

In this section we give some examples of the probability distribution of the buffer
content in continuous time for two semi-Markovian fluid flow models, where:

• N = 5,
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• the transition matrix of the Markov chain {Xn, n ≥ 1} is given by

P =




0 0.25 0.25 0.25 0.25
0.2 0 0.4 0 0.4

0.333 0.333 0 0.111 0.222
0.125 0.25 0.125 0 0.5
0.5 0.333 0.1667 0 0




, (6.85)

• for j ∈ N , k ∈ M, the parameters µjk are

µ11 = 5, µ12 = 3,

µ21 = 4, µ22 = 6,

µ31 = 2, µ32 = 5/2,

µ41 = 3/2, µ42 = 1,

µ51 = 7/2, µ52 = 9/2.

(6.86)

In subsection 6.6.1 we give the numerical results for the model where for j = 1, · · · , N,
Hj is hyper-exponentially distributed, and in subsection 6.6.2 we consider the model where
Hj is hypo-exponentially distributed.

The steady-state distribution function P{V ≤ x, J = j} of the buffer content in contin-
uous time is given explicitly by (6.84). Figures 6.1 and 6.8 are obtained from (6.84), and
in subsections 6.6.1 and 6.6.2 we show that all the time-dependent distributions converge
to the steady-state distribution. The time-dependent distribution function of the buffer
content

Fij(x, t, v) = P (Vt ≤ x, Jt = j|X1 = i, V0 = v)

can be obtained by applying the numerical inversion algorithm written in [3] to (6.66) -
(6.69). Figures 6.2 - 6.7 and figures 6.9 - 6.13 give some results on the numerical inversion
for the models with the transition matrix P given by (6.85) with various values of the
initial buffer content, the traffic intensity, and the net input rates.

6.6.1 Hyper-exponential case

In the first model we assume that for j ∈ N , Hj, the time the process {Jt, t ≥ 0} spends
in state j before making a transition to a different state is hyper-exponentially distributed
with parameters µjk for j ∈ N , k ∈ M which is given by (6.86) and the weight parameters
are

a11 = 3/4, a12 = 1/4,

a21 = 3/5, a22 = 2/5,

a31 = 5/6, a32 = 1/6,

a41 = 1/2, a42 = 1/2,

a51 = 2/3, a52 = 1/3.
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It follows that the stationary probability distribution of {Jt, t ≥ 0} is given by

π1 = 0.16844,

π2 = 0.14716,

π3 = 0.29064,

π4 = 0.20606,

π5 = 0.18768.

The net input rates are given by

r1 = −2, r2 = −1.25, r3 = −4, r4 = 1.5, r5 = 3.5.

The graphs of the steady-state distribution functions of the buffer content in continuous
time P{V ≤ x, J = j} for j = 1, · · · , 5, can be seen in figure 6.1. The function values for
some values of x, are given in table 6.1. The figure and the table show that

lim
x→∞

P{V ≤ x, J = i} = πi, i = 1, 2, · · · , N.

Figure 6.1: The steady-state distribution functions of the buffer content in continuous time
of the model with hyper-exponential Hj, j = 1, · · · , 5.
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P{V ≤ x, J = j}
x

j = 1 j = 2 j = 3 j = 4 j = 5
0 0.0552 0.0464 0.1529 0 0
0.5 0.0730 0.0623 0.1744 0.0321 0.0294
1 0.0879 0.0756 0.1925 0.0589 0.0542
1.5 0.1004 0.0867 0.2077 0.0815 0.0750
2 0.1110 0.0961 0.2205 0.1006 0.0925
2.5 0.1199 0.1040 0.2313 0.1167 0.1073
3 0.1274 0.1106 0.2404 0.1303 0.1197
3.5 0.1337 0.1163 0.2482 0.1419 0.1302
...

...
...

...
...

...

10 0.1644 0.1436 0.2857 0.1986 0.1811
10.5 0.1650 0.1441 0.2865 0.1998 0.1821
11 0.1656 0.1446 0.2871 0.2007 0.1829
11.5 0.1660 0.1450 0.2877 0.2015 0.1836
...

...
...

...
...

...

18 0.16838 .14710 0.29056 0.20595 0.18757
18.5 0.16839 0.14711 0.29057 0.20597 0.18759
19 0.16839 0.14712 0.29058 0.20598 0.18760
19.5 0.16840 0.14713 0.29059 0.20599 0.18761
20 0.16841 0.14713 0.29060 0.20601 0.18762
stationary
proba-
bility
πj

0.16844 0.14716 0.29064 0.20606 0.18768

Table 6.1: The steady-state distribution functions values for the hyper-exponential case
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Figures 6.2 - 6.4 show the behavior of F44(x, t, v) for a fixed value of ρ but for different
values of v. These graphs show that, for the same net input rates and for the same value
of traffic intensity, the time-dependent distribution functions convergence to the steady-
state distribution function faster as v is closer to π4. Figures 6.5 - 6.7 show the behavior
of F23(x, t, v) for the same v and the same net input rates, but for different values of the
traffic intensity ρ.

Figure 6.2: The time-dependent distribution function F44(x, t, 8) = P (Vt ≤ x, Jt = 4|X1 =
4, V0 = 8) for different values of t, for the model with ρ = 0.8804, and the net input rates:
r1 = −2, r2 = −1.25, r3 = −4, r4 = 1.5, r5 = 3.5.
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x F44(x, 2, 8) F44(x, 3, 8) F44(x, 5, 8) F44(x, 10, 8) P{V ≤
x, J = 4}

0 0 0 0 0 1.4e-05
0.5 0.00232 0.00799 0.01585 0.02269 0.02608
1 0.00418 0.01452 0.02944 0.042451 0.04887
1.5 0.00645 0.02038 0.04135 0.05974 0.06878
2 0.00947 0.02619 0.05203 0.07492 0.08619
2.5 0.01339 0.03238 0.06185 0.08830 0.10141
3 0.00148 0.00970 0.03482 0.07742 0.11471
3.5 0.00258 0.01283 0.04039 0.08608 0.12633

Table 6.2: The values of F44(x, t, 8) and the steady-state distribution function in figure 6.2
on some values of x

Figure 6.3: The time-dependent distribution function F44(x, t, 5) = P (Vt ≤ x, Jt = 4|X1 =
4, V0 = 5) for different values of t, for the model with ρ = 0.8804.



174 Semi - Markovian Fluid Flow Model

x F44(x, 2, 8) F44(x, 3, 8) F44(x, 5, 8) F44(x, 10, 8) P{V ≤
x, J = 4}

0 0 0 0 0 1.4e-05
0.5 5.3e-06 0.00132 0.00739 0.01741 0.02608
1 3.8e-05 0.00238 0.01360 0.03251 0.04887
1.5 0.00013 0.00358 0.01914 0.04575 0.06878
2 0.00035 0.00514 0.02436 0.05746 0.08619
2.5 0.00077 0.00716 0.02952 0.06794 0.10141
3 0.00148 0.00970 0.03482 0.07742 0.11471
3.5 0.00258 0.01283 0.04039 0.08608 0.12633

Table 6.3: The values of F44(x, t, 5) and the steady-state distribution function in figure 6.3
on some values of x

Figure 6.4: The time-dependent distribution function F44(x, t, 2) = P (Vt ≤ x, Jt = 4|X1 =
4, V0 = 2) for different values of t, for the model with ρ = 0.8804.
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Figure 6.5: The time-dependent distribution function F23(x, t, 3) = P (Vt ≤ x, Jt = 3|X1 =
2, V0 = 3) for different values of t, for the model with ρ = 0.82, and the net input rates:
r1 = −2, r2 = −1.25, r3 = −4, r4 = 1.5, r5 = 3.5.

x F23(x, 2, 3) F23(x, 4, 3) F23(x, 5, 3) F23(x, 10, 3) P{V ≤
x, J = 3}

0 0.15585 0.15815 0.15662 0.15034 0.17745
0.5 0.17947 0.17956 0.17776 0.17075 0.19959
1 0.20032 0.19790 0.19587 0.18829 0.21693
1.5 0.21872 0.21362 0.21138 0.20338 0.23070
2 0.23493 0.22708 0.22466 0.21637 0.24176
2.5 0.24906 0.23857 0.23600 0.22755 0.25068
3 0.26115 0.24836 0.24566 0.23717 0.25793
3.5 0.27125 0.25667 0.25387 0.24543 0.26383

Table 6.4: The values of F23(x, t, 3) and the steady-state distribution function in figure 6.5
on some values of x
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Figure 6.6: The time-dependent distribution function F23(x, t, 3) = P (Vt ≤ x, Jt = 3|X1 =
2, V0 = 3) for different values of t, for the model with ρ = 0.835, and the net input rates:
r1 = −2, r2 = −1.25, r3 = −4, r4 = 1.5, r5 = 3.5.

x F23(x, 2, 3) F23(x, 4, 3) F23(x, 5, 3) F23(x, 10, 3) P{V ≤
x, J = 3}

0 0.17030 0.18159 0.18195 0.18015 0.17745
0.5 0.19587 0.20446 0.20465 0.20255 0.19959
1 0.21738 0.22245 0.22242 0.22006 0.21693
1.5 0.23566 0.23680 0.23652 0.23393 0.23070
2 0.25122 0.24835 0.24780 0.24502 0.24176
2.5 0.26424 0.25769 0.25688 0.25393 0.25068
3 0.27484 0.26526 0.26419 0.26112 0.25793
3.5 0.28312 0.27138 0.27008 0.26693 0.26383

Table 6.5: The values of F23(x, t, 3) and the steady-state distribution function in figure 6.6
on some values of x
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Figure 6.7: The time-dependent distribution function F23(x, t, 3) = P (Vt ≤ x, Jt = 3|X1 =
2, V0 = 3) for different values of t, for the model with ρ = 0.87, and the net input rates:
r1 = −2, r2 = −1.25, r3 = −4, r4 = 1.5, r5 = 3.5.

x F23(x, 2, 3) F23(x, 4, 3) F23(x, 5, 3) F23(x, 10, 3) P{V ≤
x, J = 3}

0 0.17030 0.18159 0.18195 0.18015 0.17745
0.5 0.19587 0.20446 0.20465 0.20255 0.19959
1 0.21738 0.22245 0.22242 0.22006 0.21693
1.5 0.23566 0.23680 0.23652 0.23393 0.23070
2 0.25122 0.24835 0.24780 0.24502 0.24176
2.5 0.26424 0.25769 0.25688 0.25393 0.25068
3 0.27484 0.26526 0.26419 0.26112 0.25793
3.5 0.28312 0.27138 0.27008 0.26693 0.26383

Table 6.6: The values of F23(x, t, 3) and the steady-state distribution function in figure 6.7
on some values of x
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6.6.2 Hypo-exponential case

In second model we assume that for j ∈ N , Hj, the amount of time the process
{Jt, t ≥ 0} spends in state j before making a transition to a different state is hypo-
exponentially distributed with the parameters µjk for j ∈ N , k ∈ M which is given by
(6.86) and the parameters ajk satisfy (6.2).

The stationary probability distribution of {Jt, t ≥ 0} is then given by

π1 = 0.19428,

π2 = 0.14281,

π3 = 0.27309,

π4 = 0.20797,

π5 = 0.18183.

The graphs of the steady-state distribution functions of the buffer content in continuous
time P{V ≤ x, J = j} for j = 1, · · · , 5, can be seen in figure 6.8. The function values for
some values of x, are given in table 6.7. The figure and the table show that

lim
x→∞

P{V ≤ x, J = i} = πi, i = 1, 2, · · · , N.

Figure 6.8: The steady-state distribution functions of the buffer content in continuous time
of the model with hypo-exponential Hj, j = 1, · · · , 5, the net input rates: r1 = −2, r2 =
−1.25, r3 = −4, r4 = 1.5, r5 = 3.5.

Figures 6.9 and 6.10 show the behavior of F52(x, t, v) for the same net input rates and
for a fixed value of ρ but for different values of v. As for the hyper-exponential case, we
see that for the same net input rates and for the same value of the traffic intensity, the
time-dependent distribution functions convergence to the steady-state distribution function
faster as v is closer to the stationary probability.

Moreover, figures 6.11 - 6.13 show the behavior of F52(x, t, v) for the same traffic in-
tensity ρ = 0.822 and for the same initial buffer content v, but for different net input
rates.
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P{V ≤ x, J = j}
x

j = 1 j = 2 j = 3 j = 4 j = 5
0 0.0650 0.0463 0.1456 0 0
0.5 0.0775 0.0550 0.1597 0.0211 0.0188
1 0.0903 0.0644 0.1729 0.0422 0.0371
1.5 0.1023 0.0734 0.1849 0.0620 0.0540
2 0.1132 0.0816 0.1955 0.0799 0.0691
2.5 0.1229 0.0889 0.2049 0.0958 0.0825
3 0.1315 0.0954 0.2132 0.1098 0.0944
3.5 0.1392 0.1012 0.2206 0.1220 0.1049
...

...
...

...
...

...

10 0.1828 0.1352 0.2636 0.1925 0.1678
10.5 0.1842 0.1362 0.2647 0.1944 0.1695
11 0.1855 0.1370 0.2657 0.1961 0.1710
11.5 0.1865 0.1377 0.2666 0.1975 0.1723
...

...
...

...
...

...

18 0.19391 0.14252 0.27274 0.20739 0.18131
18.5 0.19395 0.14256 0.27278 0.20746 0.18137
19 0.19399 0.14259 0.27282 0.20753 0.18143
19.5 0.19403 0.14262 0.27285 0.20758 0.18148
20 0.19406 0.14264 0.27288 0.20763 0.18152
stationary
proba-
bility
πj

0.19428 0.14281 0.27309 0.20797 0.18183

Table 6.7: The steady-state distribution functions values for the hypo-exponential case
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Figure 6.9: The time-dependent distribution function F52(x, t, 8) for different values of t,
ρ = 0.8577, the net input rates: r1 = −2, r2 = −1.25, r3 = −4, r4 = 1.5, r5 = 3.5.

x F52(x, 1, 5) F52(x, 2, 5) F52(x, 3, 5) F52(x, 6, 5) P{V ≤ x, J = 2}

0 0 9.7e-08 0.00368 0.02353 0.04151
0.6 0 2.5e-05 0.00614 0.02938 0.05069
1 0 0.00013 0.00822 0.03368 0.05737
1.6 0 0.00061 0.01196 0.04013 0.06708
2 0 0.00131 0.01488 0.04432 0.07311
2.6 0 0.00318 0.01986 0.05040 0.08138
3 0 0.00510 0.02355 0.05433 0.08637
3.6 5.0e-09 0.00912 0.02962 0.06008 0.09314
4 6.0e-08 0.01256 0.03398 0.06383 0.09721
4.6 0.00010 0.01877 0.04093 0.06936 0.10271
5 0.00051 0.02365 0.04580 0.07299 0.10601
5.6 0.00213 0.03208 0.05337 0.07838 0.11046

Table 6.8: The values of F52(x, t, 4) and the steady-state distribution function in figure 6.9
on some values of x
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Figure 6.10: The time-dependent distribution function F52(x, t, 4) for different values of t,
ρ = 0.8577, the net input rates: r1 = −2, r2 = −1.25, r3 = −4, r4 = 1.5, r5 = 3.5.

x F52(x, 1, 5) F52(x, 2, 5) F52(x, 3, 5) F52(x, 6, 5) P{V ≤ x, J = 2}

0 6.0e-8 0.01213 0.02945 0.04001 0.04151
0.6 0.00010 0.01851 0.03752 0.04902 0.05069
1 0.00051 0.02352 0.04335 0.05559 0.05737
1.6 0.00213 0.03205 0.05207 0.06518 0.06708
2 0.00408 0.03831 0.05776 0.07117 0.07311
2.6 0.00926 0.04838 0.06615 0.07945 0.08138
3 0.01606 0.05545 0.07166 0.08451 0.08637
3.6 0.03243 0.06646 0.07983 0.09145 0.09314
4 0.04628 0.07398 0.08519 0.09568 0.09721
4.6 0.06978 0.08537 0.09310 0.10149 0.10271
5 0.09478 0.09663 0.09824 0.10504 0.10601
5.6 0.11123 0.10391 0.10571 0.10994 0.11046

Table 6.9: The values of F52(x, t, 4) and the steady-state distribution function in figure
6.10 on some values of x
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Figure 6.11: The time-dependent distribution function F52(x, t, 5) for different values of t,
ρ = 0.822, the net input rates: r1 = −2, r2 = −1.25, r3 = −4, r4 = 1.5, r5 = 3.5.

x F52(x, 1, 5) F52(x, 2, 5) F52(x, 3, 5) F52(x, 6, 5) P{V ≤ x, J = 2}

0 0 0.00501 0.02121 0.03612 0.04151
0.6 0 0.00908 0.02791 0.04440 0.05069
1 6.0e-008 0.01254 0.03282 0.05045 0.05737
1.6 0.00010 0.01876 0.04037 0.05933 0.06708
2 0.00051 0.02365 0.04548 0.06492 0.07311
2.6 0.00213 0.03208 0.05325 0.07272 0.08138
3 0.00408 0.03832 0.05850 0.07754 0.08637
3.6 0.00926 0.04838 0.06649 0.08425 0.09314
4 0.01606 0.05545 0.07185 0.08841 0.09721
4.6 0.03243 0.06646 0.07989 0.09422 0.10271
5 0.04628 0.07398 0.08544 0.09784 0.10601
5.6 0.06979 0.08537 0.09341 0.10293 0.11046

Table 6.10: The values of F52(x, t, 5) and the steady-state distribution function in figure
6.11 on some values of x
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Figure 6.12: The time-dependent distribution function F52(x, t, 5) for different values of t,
ρ = 0.822, the net input rates: r1 = −1.61, r2 = −1.36, r3 = −4.11, r4 = 1.38, r5 = 3.38.

x F52(x, 1, 5) F52(x, 2, 5) F52(x, 3, 5) F52(x, 6, 5) P{V ≤ x, J = 2}

0 0 0.00571 0.02166 0.03657 0.04296
0.6 0 0.00988 0.02837 0.04517 0.05272
1 9.0e-007 0.01336 0.03325 0.05138 0.05974
1.6 0.00018 0.01950 0.04074 0.06041 0.06984
2 0.00069 0.02409 0.04580 0.06605 0.07605
2.6 0.00249 0.03208 0.05350 0.07387 0.08449
3 0.00452 0.03816 0.05871 0.07868 0.08955
3.6 0.00884 0.04809 0.06665 0.08535 0.09636
4 0.01538 0.05514 0.07200 0.08948 0.10042
4.6 0.03247 0.06624 0.08007 0.09523 0.10586
5 0.04711 0.07390 0.08544 0.09882 0.10910
5.6 0.07195 0.08562 0.09341 0.10387 0.11345

Table 6.11: The values of F52(x, t, 5) and the steady-state distribution function in figure
6.12 on some values of x
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Figure 6.13: The time-dependent distribution function F52(x, t, 5) for different values of t,
ρ = 0.822, the net input rates: r1 = −2.16, r2 = −1.41, r3 = −3.66, r4 = 1.33, r5 = 3.33.

x F52(x, 1, 5) F52(x, 2, 5) F52(x, 3, 5) F52(x, 6, 5) P{V ≤ x, J = 2}

0 0 0.00357 0.02078 0.03825 0.04635
0.6 4.0e-010 0.00756 0.02801 0.04738 0.05692
1 9.1e-009 0.01119 0.03590 0.05390 0.06442
1.6 1.3e-005 0.01808 0.04402 0.06331 0.07510
2 0.00021 0.02363 0.04955 0.06915 0.08158
2.6 0.00157 0.03313 0.05799 0.07720 0.09029
3 0.00355 0.04007 0.06370 0.08213 0.09544
3.6 0.01013 0.05110 0.07232 0.08892 0.10226
4 0.01684 0.05877 0.07807 0.09310 0.10627
4.6 0.03705 0.07058 0.08377 0.09892 0.11157
5 0.05187 0.07854 0.08939 0.10253 0.11467
5.6 0.07629 0.09039 0.09762 0.10757 0.11876

Table 6.12: The values of F52(x, t, 5) and the steady-state distribution function in figure
6.13 on some values of x
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A.1 Cauchy’s Integral Formula

Theorem A.1.1 (Cauchy’s integral formula)
Let f be an analytic function on a open set Ω, an let γ be any circuit which is homo-

morphic to a point in Ω. Then for any point z in Ω which is not on the graph of γ we
have

n(γ, z)f(z) =
1

2πi

∫

γ

f(w)

w − z
dw, (A.1)

where n(γ, z) is called the winding number of γ with respect to z.

We refer to Apostol [5] for the definition of n(γ, z). If γ(t) has domain [a, b], then n(γ, z)
gives us the number of times the point γ(t) winds around the point z as t varies over the
interval [a, b]. For example, if γ is a positively oriented circle given by γ(θ) = z + reiθ,
where 0 ≤ θ ≤ 2π, then the winding number is 1. For the proof see also [5].

A.2 Some Limit Theorems

Theorem A.2.1 (Abel’s theorem for power series)
If
∑∞

n=0 anr
n converges for |r| < 1 and limn→∞ an = a, then

lim
r↑1

(1 − r)
∞∑

n=0

anrn = a.

Proof. See Feller [26].

Theorem A.2.2 (Abel’s theorem for Laplace transforms)
If
∫∞

0
a(t)dt is convergent then

∫∞

0
e−φta(t)dt is uniformly convergent for Re(φ) ≥ 0

and

lim
φ→0

∫ ∞

0

e−φta(t)dt =

∫ ∞

0

a(t)dt, |arg(φ)| ≤ θ <
1

2
π.

185
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If
∫∞

0
a(t)dt is convergent for Re(φ) ≥ 0 and a(t) has a limit for t → ∞ then

lim
t→∞

a(t) = lim
φ→0

φ

∫ ∞

0

e−φta(t)dt, |arg(φ)| ≤ θ <
1

2
π.

Proof. See Doetsch [25].

A.3 Some inversion formulas

The following inversion formula can be found from Widder[43], page 69.

Lemma A.3.1
Let F be the distribution function of a non-negative random variable with Laplace-

Stieltjes transform f ∗(φ). Then for x > 0,

F (x+) + F (x−)

2
=

1

2πi

∫ c+i∞

c−i∞

eφx

φ
f ∗(φ)dφ, c > 0. (A.2)

For rational Laplace-Stieltjes transforms, we refer to Bateman & Erdelyi [11] for the
inversion formula. Let

g(φ) =

∫ ∞

0

e−φtf(t)dt =
Q(φ)

P (φ)
,

where
P (φ) = (φ − a1)

m1(φ − a2)
m2 · · · (φ − an)mn

and Q(φ) is a polynomial of degree m1 + m2 + · · ·+ mn or less, ai 6= aj for i 6= j. Then the
inverse is given by

f(t) =
n∑

k=1

mk∑

l=1

Φkl(ak)t
mk−1eakt

(mk − l)!(l − 1)!
(A.3)

with

Φkl(φ) =
∂l−1

∂φl−1

(
Q(φ)

Pk(φ)

)

and

Pk(φ) =
P (φ)

(φ − ak)mk
.

A.4 Characteristics of the zeros of a function

Information on the location of zeros of a function is needed in order to get a unique
Wiener-Hopf factorization(see subsection 2.3).

Theorem A.4.1 (Rouché’s Theorem)
Let f and g be analytic in D and let γ be a simply closed path which is null homologous

in D and which satisfies

|f(ζ) − g(ζ)| < |g(ζ)| for all ζ ∈ γ.

Then f and g have the same number of zeros inside γ.
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Proof. See Apostol [5].
For the queueing systems in chapters 4-6, the functions we consider are actually the

determinants of certain polynomial matrices. The generalization of Rouché’s theorem for
those determinants is given in de Smit [21].

Theorem A.4.2 (Generalization of Rouché’s Theorem)
Let A(φ) = (aij(φ)) and B(φ) = (bij(φ)) be complex n × n−matrices, where B(φ) is

diagonal. The elements aij and bij, 1 ≤ i ≤ n, 1 ≤ j ≤ n, are meromorphic functions in
a simply connected region S in which T is the set of all poles of these functions. C is
a rectifiable closed Jordan curve in S − T. NA[NA+B] is the number of zeros inside C of
detB(φ)[det(A(φ)+B(φ))] and PA[PA+B] is the number of poles inside C(poles and zeros
of higher order are counted according to this order). If

(i) |bii(φ)| >
∑n

j=1 |aij(φ)| on C for all i = 1, · · · , n

or
(ii)A(φ) is decomposable on C and |bii(φ)| ≥∑n

j=1 |aij(φ)| on C,

for all i = 1, · · · , n with strict inequality for at least one i,

then on C
det(A(φ) + B(φ)) 6= 0,

detB(φ) 6= 0,

and
NA+B − PA+B = NB − PB.

A.5 Some results from the Theory of Matrices

The following lemma concerns the inverse of a simple constant matrix. An N × N -
dimensional matrix A is called a simple matrix if it has N eigenvalues which are all distinct.

Lemma A.5.1
Let A0 be a simple N×N -dimensional matrix. Let x1,x2, . . . ,xN be the right eigenvec-

tors corresponding to eigenvalues a1, a2, . . . , aN . If x−1
i denotes the i-th row of the matrix

X−1 =
(
x1x2 . . .xN

)−1

then the inverse of matrix φI − A0, where φ is a complex number, is given by

(φI − A0)
−1 =

N∑

i=1

xix−1
i

(φ − ai)
.

Proof. Let yi, i = 1, 2, · · · , n be the left eigenvectors of A0. Let

X = [x1x2 . . .xn],

Y = [y1y2 . . .yn],
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and
U = diag(a1, a2, . . . , an).

Then
A0X = XU and YtA0 = UYt.

Since A0 is simple, then X is nonsingular . Hence,

X−1A0 = UX−1. (A.4)

It follows that the rows of X−1 are the left eigenvectors of A0. Hence, Y can be chosen so
that Yt = X−1 or

YtX =




y1t

y2t

...
ynt


 [x1x2 . . .xn] = I

or
yitxj = δij, i, j = 1, 2, . . . , n.

Define for i = 1, 2, . . . , n the constituent matrices

Gi = xiyt
i

where yt
i denotes the i-th row of the matrix Yt. According to these relations, we see that

the constituent matrices have the following properties;

1.
∑n

i=1 Gi = I

2. GiGj = 0, i 6= j, i, j = 1, 2, . . . , n

3. G2
i = Gi, i = 1, 2, . . . , n.

Now, from (A.4) we have

(φI − A0) = (φI − XUY)

=


φI − [x1x2 . . .xn]




a1y
t
1

a2y
t
2

...
any

t
n







=

(
a

n∑

i=1

Gi −
n∑

i=1

aiGi

)

=
n∑

i=1

(φ − ai)Gi.

Define

B =
n∑

l=1

Gl

(φ − al)
.
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Then by the properties of Gi,

(φI − A0)B =
n∑

i=1

n∑

l=1

(φ − ai)

(φ − al)
GiGl =

n∑

i=1

G2
i = I.

We can conclude that

B =
n∑

l=1

Gl

(φ − al)
= (φI − A0)

−1.

�

In chapter 6 we need to invert some matrix polynomials or sometimes known as φ-
matrices of degree l, l ≥ 2 of the form

A(φ) =
l∑

i=0

φiAi, (A.5)

where A0,A1, · · · ,Al are N×N -matrices of complex numbers independent of φ. If Al = IN ,
the N × N -identity matrix, then the matrix polynomial is said to be monic, and (A.5)
becomes

A(φ) = φlIN +
l−1∑

i=0

φiAi. (A.6)

The complex number φ0 is called an eigenvalue of the monic matrix polynomial A(φ) of
form (A.6) if there are N -dimensional vectors x0,x1, · · · ,xk, for some k ≥ 0 with x0 6= 0,
so that for i = 0, 1, · · · , k,

i∑

p=0

1

p!
A(p)(φ0)xi−p = 0, (A.7)

where A(p)(φ) denotes the pth derivative of A(φ) with respect to φ. The sequence of
vectors x0,x1, · · · ,xk is called a Jordan chain of length k +1 of A(φ) corresponding to the
eigenvalue φ0. The vector x0 is called an eigenvector and the subsequent vectors x1, · · · ,xk

are called generalized eigenvectors. The monic polynomial of form (A.6) has exactly Nl
eigenvalues when counted with multiplicities. The set

σ(A) = {φ0|φ0 is the eigenvalue of A(φ)}

is called the spectrum of A(φ). It is clear that σ(A) contains at most lN elements.
For φ /∈ σ(A), the inverse of the monic matrix polynomial A(φ) in (A.6) can be

expressed in terms of the so called standard triple of A(φ). The theorem in the following
and some explanations after that will explain the standard triple of A(φ) precisely.

Theorem A.5.1
For every φ /∈ σ(A),

A−1(φ) = P1(φINl − CA)−1R1,
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where

P1 = (IN 0 · · ·0), R1 =




0
...
0
IN


 ,

and

CA =




0 IN 0 · · · 0

0 0 IN · · · ...
...

...
...

... IN

−A0 −A1 −A2 · · · −Al−1


 ,

which is called the (first) companion matrix of A(φ).

Proof. See page 58 of Gohberg[28].

Any three matrices (U,T,V) are said to be admissible for A(φ) if they are of size
N × lN, lN × lN, and lN × N, respectively. Any admissible triple (U,T,V) which is
similar to the triple (P1,CA,R1) in Theorem A.5.1 above is said to be a standard triple
for A(φ). The similarity of those triples means that there is a non singular matrix S so
that

U = PS, T = S−1CAS, V = S−1R1.

The following theorem is a generalization of Theorem A.5.1, in the sense that the inverse
of the monic matrix polynomial A(φ) can be expressed by any standard triple of A(φ).

Theorem A.5.2
If (U,T,V) is a standard triple for A(φ) and φ /∈ σ(A), then

A−1(φ) = U(φINl − T )−1V. (A.8)

Proof. See [28].

In chapter 6 we use the representation of L(1, φ, η)−1 in form of (A.8), where U =

E(1, η) and T = diag(γ1(1, η), · · · , γNm(1, η)). The matrix




U
UT

...
UTl−1


 is nonsingular, and

the third matrix V can be defined by

V =




U
UT

...
UTl−1




−1


0
0
...

IN


 .
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The standard triple (U,T,V) of the monic polynomial matrix (A.5) has the property
(see page 52 of [28] for the proof) that

UTiV =

{
0 , for i = 0, · · · , l − 2,

IN , for i = l − 1.

A.6 The proof of Lemma 5.3.3

If B and A are n × n-dimensional nonsingular matrices, X is an n × r-dimensional
matrix, R is an r × r-dimensional nonsingular matrix, and Y is an r × n-dimensional
matrix such that

B = A + XRY,

then it is easy to prove(see [33]) that

B−1 = A−1 − A−1X(R−1 + YA−1X)−1YA−1. (A.9)

If we apply this result to the matrix K(1, φ, η) defined in (5.16), we get

K(1, φ, η)−1 = I − D(1, η)X(φ, η)−1C(1, η) (A.10)

where

X(φ, η) =diag(φ − µ1(1, η), . . . , φ − µK̄(1, η)) + C(1, η)D(1, η)

=φI + (IK̄NE(1, η)INK̄)−1IK̄Nα(I + ηq−1)E(1, η)INK̄ .

The inverse of X(φ, η), by using the same relation, is

1

φ
I − 1

φ
(IK̄NE(1, η)INK̄)−1IK̄Nααα(η)M(φ, η)−1E(1, η)INK̄ .

If we substitute this into (A.10) we get

K(1, φ, η)−1 =I − 1

φ
D(1, η)C(1, η)

[
I −ααα−1ααα(η)M(φ, η)−1E(1, η)INK̄C(1, η)

]

=I − D(1, η)C(1, η)M(φ, η)−1,

and we get (5.24). Since the last N − K̄ columns of C(1, η) are zero, it is clear that
K−1(1, φ, η) is analytic in the left half-plane Re(φ) < 0.

Moreover, from equation (5.8) we get

H−1(1, φ, η) = M(φ, η)ααα−1L−1(1, φ, η)ααα. (A.11)

Since for i ∈ N µ̄i and Ēi satisfy the equation (5.12), then by Condition 5.3.1 and Lemma
A.5.1 we have

L−1(1, φ, η) =
N∑

i=1

ĒiĒ−1
i

(φ − µ̄i)
, (A.12)

and if we substitute this into (A.11) we get (5.25).

�
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A.7 The proof of Lemma 5.4.1

Let
Ẽ̃ẼE(z, η) = (IK̄NE(z, η)INK̄)−1IK̄N .

Then by the various definitions,

M(φ, η) − D(z, η)C(z, η)

=φI + ααα(η) − (I + ηqqq−1)E(z, η)INK̄Ẽ̃ẼE(z, η)ααα

−ααα−1E(z, η)INK̄diag(µ1(z, η), · · · , µK̄(z, η))Ẽ̃ẼE(z, η)ααα

=φI + ααα(η) − (I + ηqqq−1)

(
IK̄ 0
A 0

)
ααα

−ααα−1

K̄∑

k=1

µk(z, η)Ek(z, η)Ẽ̃ẼEk(z, η)ααα,

where IK̄ is K̄ × K̄-dimension identity matrix and A is (N − K̄) × K̄-dimension matrix
with elements

Aij = (E(z, η)INK̄)K̄+iẼ̃ẼE
j(z, η).

It follows that

Ci(z, η) [M(φ, η) − D(z, η)C(z, η)]

=Ẽ̃ẼEi(z, η)ααα (φI + ααα(η)) − Ẽ̃ẼEi(z, η)ααα(η)

(
IK̄ 0
A 0

)
ααα

− Ẽ̃ẼEi(z, η)
K̄∑

k=1

µk(z, η)Ek(z, η)Ẽ̃ẼEk(z, η)ααα

=φẼ̃ẼEi(z, η)ααα + Ẽ̃ẼEi(z, η)αααααα(η) − Ẽ̃ẼEi(z, η)ααα(η)

(
IK̄ 0
A 0

)
ααα

− µi(z, η)Ẽ̃ẼEi(z, η)ααα.

(A.13)

The second and the third term of the last equation in (A.13) will cancel since the last
N − K̄ elements of Ẽ̃ẼEi(z, η) are zero. We then can conclude that

Ci(z, η) [M(φ, η) − D(z, η)C(z, η)] = (φ − µi(z, η))Ci(z, η).

�

A.8 The proof of Lemma 5.5.1

From Lemma 5.3.3 now we have

K−1(1, φ, η)H−1(1, φ, η) = (M(φ, η) − D(1, η)C(1, η))ααα−1

N∑

i=1

ĒiĒ−1
i

(φ − µ̄i)
ααα, (A.14)
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and based on this result we will derive the expression for Z∗(φ, η, v).

By definition, we have

K+(1, φ, η, v) + K−(1, 0, η, v)

=Z0(φ, η, v)K(1, φ, η, v) −
(
K−(1, φ, η, v) − K−(1, 0, η, v)

)

=Z0(φ, η, v)K(1, φ, η, v) − φ

K̄∑

i=1

Z0(µ̄i, η, v)Di(1, η)Ci(1, η)

µ̄i(φ − µ̄i)
,

so that

(
K+(1, φ, η, v) + K−(1, 0, η, v)

)
K(1, φ, η, v)−1H(1, φ, η)−1

=Z0(φ, η, v)H(1, φ, η)−1

− φ
K̄∑

i=1

Z0(µ̄i, η, v)Di(1, η)Ci(1, η)

µ̄i(φ − µ̄i)
K(1, φ, η, v)−1H(1, φ, η)−1.

(A.15)

By combining (A.15) with Lemma 5.4.1 and (A.14), we obtain

(
K+(1, φ, η, v) + K−(1, 0, η, v)

)
K−1(1, φ, η, v)H−1(1, φ, η)

=Z0(φ, η, v)M(φ, η)ααα−1

N∑

l=1

ĒlĒ−1
l

(φ − µ̄l)
ααα

− φ
K̄∑

l1=1

Z0(µ̄l1 , η, v)

µ̄l1

M(µ̄l1 , η)ααα−1Ēl1Cl1(1, η)ααα−1

N∑

l2=1

Ēl2Ē−1
l2

(φ − µ̄l2)
ααα

=Z0(φ, η, v)M(φ, η)ααα−1

N∑

l=1

ĒlĒ−1
l

(φ − µ̄l)
ααα

−
K̄∑

l=1

Z0(µ̄l, η, v)

µ̄l

M(µ̄l, η)ααα−1ĒlCl(1, η)

−
K̄∑

l=1

Z0(µ̄l, η, v)

µ̄l

M(µ̄l, η)ααα−1ĒlCl(1, η)ααα−1

N∑

l1=1

Ēl1Ē−1
l1

(φ − µ̄l1)
ααα.

(A.16)

If we substitute (A.16) into (5.42) then we get (5.55).

�



194 Appendix

A.9 The proof of Lemma 6.3.4

By the definitions of C(1, η) and D(1, η) we have for Re(η) ≥ 0,

C(1, η)D(1, η)

=S(1, η)−1C0D(1, η)

=S(1, η)−1C0

(
M(γ1(1, η), η)E1(1, η) · · ·M(γK̄m(1, η), η)EK̄m(1, η)

)
,

where the (i, j)th element of

M(γ1(1, η), η)E1(1, η) · · ·M(γK̄m(1, η), η)EK̄m(1, η)

is equal
m∏

k=1

(γj(1, η) + αik(η))Eij(1, η),

so that

C0

(
M(γ1(1, η), η)E1(1, η) · · ·M(γK̄m(1, η), η)EK̄m(1, η)

)

=S(1, η)γ̃γγ(1, η) + α̃αα(η)S(1, η),

where

γ̃γγ(1, η) = diag(γ1(1, η), · · · , γK̄m(1, η))

and

α̃αα(η) = diag(α11(η), α21(η), · · · , αK̄1(η), α12(η), · · · , αK̄2(η), · · · , αK̄m(η)).

It follows that

X(φ, η) = φI − γ̃γγ(η) + C(1, η)D(1, η)

= φI − S(1, η)−1S(1, η)γ̃γγ(1, η) + S(1, η)−1S(1, η)γ̃γγ(1, η)

+ S(1, η)−1α̃αα(η)S(1, η)

= φI + S(1, η)−1α̃αα(η)S(1, η),

and

X(φ, η)−1 = S(1, η)−1(φI + α̃αα(η))−1S(1, η), (A.17)

and it proves the lemma.
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A.10 Analyticity of Z(1, φ, η, v) at φ = γi(η) for i =

1, · · · , K̄m

We see that for l = 1, 2, · · · , K̄m,

lim
φ→γl(1,η)

(φ − γl(1, η))Z(1, φ, η, v)

=Z0(γl(1, η), η, v)M(γl(1, η), η)El(η)Yl(η)

− γl(1, η)
K̄m∑

i=1

Z0(γi(1, η), η, v)Di(1, η)

γi(1, η)
1iX

−1(γl(1, η), η)C(1, η)M(γl(1, η), η)

=Z0(γl(1, η), η, v)M(γl(1, η), η)El(η)Yl(η)

− γl(1, η)
K̄m∑

i=1

Z0(γi(1, η), η, v)Di(1, η)

γi(1, η)
1iX

−1(γl(1, η), η)C(1, η)Dl(1, η)Yl(η)

.El(η)Yl(η),

using Dl(1, η) = M(γl(1, η), η)El(η). Eliminating C(1, η)Dl(1, η) using (6.31) we obtain
for Re(η) > 0,

lim
φ→γl(1,η)

(φ − γl(1, η))Z(1, φ, η, v)

=Z0(γl(1, η), η, v)M(γl(1, η), η)El(η)Yl(1, η)

− γl(1, η)
K̄m∑

i=1

Z0(γi(1, η), η, v)Di(1, η)

γi(1, η)
1iX

−1(γl(1, η), η)

(C(1, η)Dl(1, η) + (γl(1, η) − γl(1, η))1T
l )Yl(η)

=Z0(γl(1, η), η, v)M(γl(1, η), η)El(η)Yl(η)

− γl(1, η)
K̄m∑

i=1

Z0(γi(1, η), η, v)Di(1, η)

γi(1, η)
1i1

T
l Yl(η)

=0

(A.18)

or Z(1, φ, η, v) has no poles at γl(1, η) for l = 1, 2, . . . , K̄m.
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Summary

In this thesis we study the time-dependent behavior of queueing systems. The study is
focused on the queueing systems:

1. the GI/G/1 system,

2. the GI/Hm/s system,

3. the Markovian Fluid Flow Model, the fluid flow model that is modulated by a Markov
process,

4. the Semi-Markovian Fluid Flow Model, a generalization of the Markovian Fluid Flow
Model.

In general, the time-dependent behavior of queueing systems is much influenced by the
initial server(s)’s work load. This leads us to consider the queueing systems with non-zero
initial server(s)’s work load. In the GI/G/1 system and the GI/Hm/s system this means
that in the beginning there exist a number of (special) customers to serve. In the last two
systems, initially the buffer has non-zero content.

The technique that is used to analyze the behavior of the queueing systems studied in
this thesis is based on the Wiener-Hopf factorization. A brief discussion on the Wiener-
Hopf factorization is given in chapter 2, where we also give the conditions on the existence
of uniqueness of the factorization. In this chapter we also give some preliminaries that we
need for the analysis in the rest chapters.

The first major step in the analysis is the derivation of the (system of) transformed
Wiener-Hopf equation(s). Wiener-Hopf factorization is then applied to its symbol. Since
the queueing systems we consider have a non-zero initial working load, the Wiener-Hopf
factorization should be followed by a decomposition on a certain (matrix) function. The
Wiener-Hopf factorization and the decomposition yields a (formal) solution of the (system
of) equation(s).

If the stability condition is fulfilled, then the steady-state distributions of interest can be
determined by applying Abel’s limit theorem to the solution of the (system of) equation(s).

In chapter 3 we study the system GI/G/1 with non-zero initial number of customers.
We get the explicit factorizations for two special systems, the systems GI/Kn/1 and
Km/G/1. These results give explicit expressions for the Lapace-Stieltjes transform of ac-
tual waiting times and virtual waiting times. Then, by applying a contour integration, we
get the expectation of number of customers at arrival epochs and in continuous times as
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well. At the end of this chapter we give numerical results to illustrate the behavior of the
system as it tends to the steady-state.

In chapter 4 we study the system GI/Hm/s with non-zero initial number of customers.
As in chapter 3, the Wiener-Hopf factorization gives explicit expressions for the Lapace-
Stieltjes transform of actual waiting times and virtual waiting times. Then, the distribu-
tions of the queue length and the number of customers in the system are derived, both at
arrival epochs and in continuous time. At the end of this chapter we again give numerical
results.

In chapter 5 we study the Markovian Fluid Flow Model, the fluid flow model in which
the rate of data that flow into the buffer depends on the state of a Markov process. The
Wiener-Hopf factorization gives us an explicit expression for the Laplace-Stieltjes transform
of buffer content at transition epochs of the underlying Markov process. From this we can
derive the distribution of the buffer content in continuous times. We conclude this chapter
with some numerical results.

In chapter 6 we study a generalization of the model of chapter 5. The times be-
tween transitions of the underlying Markov process are not assumed to be exponentially
distributed anymore but are assumed to be either hyper-exponentially distributed or hypo-
exponentially distributed. With this assumption, the symbol of Wiener-Hopf-type equa-
tions is still a rational matrix in φ, and each element of this matrix has only simple poles.
This matrix can be factorized by the Wiener-Hopf factorization technique as we apply in
chapter 5. We have obtained the distribution of the buffer content and the corresponding
numerical results.



Ringkasan

Thesis ini membahas perilaku pada waktu tertentu(time-dependent behavior) dan per-
ilaku pada keadaan steady state dari beberapa sistem antrian. Pembahasan perilaku-
perilaku tersebut difokuskan pada sistem-sistem antrian:

1. Sistem antrian GI/G/1,

2. Sistem antrian GI/Hm/s,

3. Markovian Fluid Flow Models, yaitu model-model fluid flow yang berlandaskan pada
suatu proses Markov,

4. Semi-Markovian Fluid Flow Models, yang merupakan perumuman dari Markovian
Fluid Flow Models.

Secara umum, perilaku suatu sistem antrian pada suatu selang waktu yang terbatas
akan sangat dipengaruhi oleh keadaan awal sistem antrian tersebut: apakah pada keadaaan
awal (para) pelayan yang ada sedang sibuk melayani (para) pelanggan atau tidak. Lan-
dasan pikiran ini mendorong kita untuk memandang sistem-sistem antrian di atas dengan
beban kerja dari (para) pelayan pada awal pengamatan yang tidak nol. Ini berarti dalam
dua sistem antrian pertama, sistem GI/G/1 dan GI/Hm/s, pada awal pengamatan ter-
dapat sejumlah pelanggan dalam antrian. Sedangkan pada dua sistem terakhir, hal ini
berarti pada awal pengamatan kita mempunyai buffer yang berisi.

Teknik yang dipakai untuk menentukan perilaku antrian - antrian yang dibahas dalam
thesis ini adalah suatu teknik berdasarkan faktorisasi Wiener-Hopf. Penjelasan tentang
faktorisasi Wiener-Hopf kami berikan di bab 2, di mana pada bab tersebut kami juga
membahas kondisi-kondisi agar eksistensi dari ketunggalan faktorisasi Wiener-Hopf ini di-
jamin. Di bab yang sama kami juga menampilkan penjelasan singkat tentang beberapa
teori dasar yang dipakai dalam menganalisa sistem-sistem antrian yang dibahas di thesis
ini.

Jika kondisi kestabilan dipenuhi, maka distribusi-distribusi peluang yang menjadi per-
hatian pada keadaan steady state dapat diturunkan dengan cara menerapkan teorema limit
Abel pada solusi dari sistem persamaan Wiener-Hopf. Hasilnya kemudian kita inversi se-
cara analitik unutk mendapatkan distribusi yang kita inginkan.

Untuk sistem-sistem antrian di thesis ini, transformasi Laplace-Stieltjes ganda yang
terturunkan merupakan fungsi rasional terhadap salah satu peubahnya. Hal ini memu-
ngkinkan kita melakukan inversi secara analitik untuk mendapatkan transformasi Laplace-
Stieltjes tunggal. Pada transformasi tunggal inilah, yang tidak lagi berupa fungsi rasional,
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kita dapat melakukan inversi secara numerik untuk melihat kelakuan sistem antrian pada
saat - saat tertentu.

Di bab 3 dibahas sistem antrian GI/G/1 dengan jumlah pelanggan pada saat awal tidak
sama dengan nol. Kita dapatkan faktor-factor eksplisit untuk dua kasus khusus sistem
ini, yaitu sistem-sistem GI/Kn/1 dan Km/G/1. Hasil ini memberikan ekspresi eksplisit
transformasi Laplace-Stieltjes dari distribusi waktu tunggu sebenarnya juga waktu tunggu
virtual. Sesudah itu, dengan teknik integral garis kita dapatkan ekspektasi dari jumlah
pelanggan pada sistem pada titik-titik kedatangan pelanggan dan untuk waktu-waktu yang
kontinu. Di akhir bab ditampilkan hasil perhitungan numerik untuk memberikan ilustrasi
tentang kelakuan sistem mulai awal pengamatan sampai dicapai keadaan steady state.

Di bab 4 dibahas sistem antrian GI/Hm/s dengan jumlah pelanggan pada awal penga-
matan tidak sama dengan nol. Dengan menerapkan teknik faktorisasi Wiener-Hopf yang
dilengkapi kita dapatkan ekspresi eksplisit transformasi Laplace-Stieltjes dari distribusi
waktu tunggu sebenarnya juga waktu tunggu virtual. Sesudah itu, diturunkan distribusi
dari panjang antrian juga banyaknya pelanggan pada sistem, keduanya dilihat pada titik-
titik kedatangan pelanggan juga untuk waktu yang kontinu. Di akhir bab ditampilkan
hasil perhitungan numerik untuk memberikan ilustrasi tentang kelakuan sistem mulai awal
pengamatan sampai dicapai keadaan steady state.

Bab 5 berisi pembahasan tentang Markovian Fluid Flow Model, yaitu model fluid flow
dimana aliran data yang masuk ke dalam buffer berdasarkan pada keadaan dari suatu
proses Markov. Penerapan teknik faktorisasi Wiener-Hopf yang dilengkapi menghasilkan
ekspresi eksplisit transformasi Laplace-Stieltjes dari isi buffer pada titik-titik transisi proses
Markov yang mendasari proses aliran data. Dari hasil ini kita juga bisa mendapatkan
distribusi untuk isi buffer pada waktu yang kontinu. Hasil perhitungan numerik diberikan
di akhir bab untuk memberi ilustrasi tentang distribusi peluang dari isi buffer mulai saat
awal sistem berjalan sampai keadaan steady state dicapai.

Bab 6 mempelajari perumuman dari model di bab 5. Di bab ini, waktu antar transisi
dari proses Markov yang mendasari aliran data yang masuk ke buffer tidak lagi diasumsikan
berdistribusi eksponensial, tetapi dibuat/diasumsikan memiliki distribusi hyper-exponential
atau hypo-exponential. Dengan asumsi ini, matriks dari simbol Wiener-Hopf masih meru-
pakan matriks rasional dengan elemen-elemen yang mempunyai pole yang berorde satu.
Karena itu, teknik faktorisasi dan dekomposisi seperti di bab 5 masih bisa digunakan un-
tuk menyelesaikan sistem persamaan Wiener-Hopf dari model di bab ini. Distribusi dari
isi buffer didapatkan dengan teknik ini, dan hasil numerik untuk distribusi ini diberikan di
akhir bab.
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